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Topics



 Relationship between elements of sets is

represented using a mathematical structure called

relation.

 The most intuitive way to describe the relationship is

to represent in the form of ordered pair.

Definition :

Let A and B be two sets. A binary relation from A

to B is a subset of A x B.

 Note: If A, B and C are three sets, then a subset of

AxBxC is known as ternary relation. Continuing this way

a subset of A1xA2x...xAn is known as n – ary relation.
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Introduction



 Let A and B be two sets. Suppose R is a relation from A to

B (i.e. R is a subset of A x B). Then, R is a set of ordered

pairs where each first element comes from A and each

second element from B.

 Thus, we denote it with an ordered pair (a, b), where a

∊ A and b ∈ B.

 ie.,R={(a,b)/ a ∊ A and b ∈ B}

 We also denote the relationship with a R b, which is read

as “a related to b”.
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 Consider the following example :

 A={Mohan, Charles, David, Ravi}

 B={Kavitha, Marry, Chithra}

 Suppose Kavitha has two brothers Mohan and

Charles, Marry has one brother David, and Chitra has

one brother Ravi.

 If we define a relation R " is a brother of" between the

elements of A and B then clearly.

 Mohan R Kavitha, Charles R Kavitha, David R Marry,

Ravi R Chitra.

 After omitting R between two names these can be

written in the form of ordered pairs as :

 (Mohan, Kavitha), (Charles, Kavitha), (David, Marry),

(Ravi, Chitra). 5
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 The above information can also be written in the form 

of a set R of ordered pairs as 

 R= {(Mohan, Kavitha), (Charles, Kavitha), (David, 

Marry), (Ravi, Chitra)}

 Clearly R⊆ AxB, i.e.R={(a,b)/a∊A and b∊B }

 Domain and Range of a Relation

 If R is a relation between two sets then the set of its

first elements (components) of all the ordered pairs

of R is called Domain and set of 2nd elements of all

the ordered pairs of R is called range, of the given

relation.

 Consider previous example given above.

Domain = {Mohan, Charles, David, Ravi}

Range = {Kavitha, Marry, Chitra}
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 reflexive

 symmetric

 transitive

 irreflexive

anti symmetric
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equivalence relation
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PROPERTIES OF RELATION IN A SET



Definition:

A binary relation R in a set X is reflexive if x R x, for

every x Є X

 That is (x, x) Є R

Example:

If R1 = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)} be a relation

on A = {1, 2, 3}, then R1 is a reflexive relation, since for

every x ∈ A, (x, x) ∈ R1.
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Reflexive



Definition:

A relation R in a set X is symmetric if x R y, then y

R x for every x and y in X.

Example:

If R3 = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 1), (3, 1)} be a

relation on A = {1, 2, 3}, then R3 is a symmetric relation.
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Symmetric



Definition

A relation R in a set X is transitive if, for every x,

y, and z are in X, whenever x R y and y R z , then x R

z. That is (x,z)∊R.

Example:

Let A = {a, b, c, d} and R be defined as follows: R =

{(a, b), (d, b), (b, d), (a, d), (b, c), (d, c)}. Here R is

transitive relation on A.
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Transitive



Definition

A relation R in a set X is irreflexive if, for every x Є X

, (x, x)∉X.

Example:

Let A be a set of positive integers and R be a relation

on it defined as, a R b if “a is less than b”. Then, R is an

irreflexive relation, as a is not less than itself for any

positive integer a.
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irreflexive



Definition

A relation R in a set x is anti symmetric if , for

every x and y in X, whenever x R y and y R x,

then x = y.

Example:

 The relation “less than or equal to (≤)”, is an anti-

symmetric relation.

 Let A = {1, 2, 3, 4} and R be defined as: R = {(1, 1), (2,

2), (3, 3), (4, 4)}. Here R is antisymmetric relation.
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Anti symmetric



Definition:

Let R be a relation defined from a set A to itself. For a, 

b ∈A, if a R b, then b     a , then R is said to be asymmetric 

relation. 

Example:

Let A = {a, b, c, d} and R be defined as: R = {(a, b), (b, 

c), (b, d), (c, d), (d, a)}. Here R is asymmetric relation.
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asymmetric relation



Definition:

Let R be a relation defined from a set A to itself. If R is

reflexive, symmetric and transitive, then R is called as

equivalence relation.

Example:

Consider the set L of lines in the Euclidean plane. Two

lines in the plane are said to be related, if they are parallel

to each other. This relation is an equivalence relation.
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equivalence relation



 Relation Matrix: A relation R from a finite set X to a

finite set Y can be represented by a matrix is called

the relation matrix of R.

 Let X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn} be finite

sets containing m and n elements, respectively, and R

be the relation from A to B. Then R can be

represented by an m × n matrix MR = [rij ], which is

defined as follows:
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Relation Matrix and the Graph of a relation



Example:

 Let A = {1, 2, 3, 4} and B = {b1, b2, b3}. Consider the relation

R = {(1, b2), (1, b3), (3, b2), (4, b1), (4, b3)}. Determine the

matrix of the relation.

Solution:

 A = {1, 2, 3, 4}, B = {b1, b2, b3}.

 Relation R = {(1, b2), (1, b3), (3, b2), (4, b1), (4, b3)}.

Matrix of the relation R is written as

 That is MR =
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Graph of a Relation:

 A relation can also be represented pictorially by

drawing its graph.

 Let R be a relation in a set X = {x1, x2, ..., xm}. The

elements of X are represented by points or circles

called nodes.

 These nodes are called vertices. If (xi, xj ) ∈ R, then

we connect the nodes xi and xj by means of an arc

and put an arrow on the arc in the direction from xi

to xj . This is called an edge.

 If all the nodes corresponding to the ordered pairs in

R are connected by arcs with proper arrows, then we

get a graph of the relation R.
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Example: 

Let X = {1, 2, 3, 4} and R={(x, y)| x > y}. Draw the graph of 

R and also give its matrix.

Solution:

R = {(4, 1), (4, 3), (4, 2), (3, 1), (3, 2), (2, 1)}. 

The graph of R and the matrix of R are 
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Definition:

A relation R in S is said to be a compatibility relation if it

is reflexive and symmetric.

Clearly, all equivalence relations are compatibility

relations.

A compatibility relation is sometimes denoted by ≈.

Example: Let X = {ball, bed, dog, let, egg}, and let the

relation R be given by R = {(x, y)| x, y ∈ X ∧ xRy if x and y

contain some common letter}.

Then R is a compatibility relation, and x, y are called

compatible if xRy.

Note: ball≈bed, bed≈egg. But ball≉egg. Thus ≈ is not

transitive.
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compatibility relation



 Let R be a relation from X to Y and S be a relation

from Y to Z. Then the relation R o S is given by

 R o S = {(x, z) / x∊X ∧ z ∊ Z ∧ y ∊ Y such that (x, y) ∈ R

∧ (y, z) ∈S)} is called the composite relation of R and S.

 The operation of obtaining R o S is called the

composition of relations.

 Example1: Let R = {(1, 2), (3, 4), (2, 2)} and

S = {(4, 2), (2, 5), (3, 1),(1,3)} Then

R o S = {(1, 5), (3, 2), (2, 5)} and

S o R = {(4, 2), (3, 2), (1, 4)}

It is to be noted that R o S ≠ S o R.

Also Ro(S o T) = (R o S) o T = R o S o T
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Composition of binary relations 



Example2: Let R = {(1, 2), (3, 4), (2, 2)} and S = {(4, 2),

(2, 5), (3, 1), (1, 3)}. Find R ◦ S, S ◦ R, R ◦ (S ◦ R), (R ◦ S) ◦

R, R ◦ R, S ◦ S, and (R ◦ R) ◦ R.

Solution:

Given R = {(1, 2), (3, 4), (2, 2)} and S = {(4, 2), (2, 5), (3, 1),

(1, 3)}.

R ◦ S = {(1, 5), (3, 2), (2, 5)}

S ◦ R = {(4, 2), (3, 2), (1, 4)} ≠R ◦ S

(R ◦ S) ◦ R = {(3, 2)}

R ◦ (S ◦ R) = {(3, 2)} = (R ◦ S) ◦ R

 R ◦ R = {(1, 2), (2, 2)}

 R ◦ R ◦ S = {(4, 5), (3, 3), (1, 1)}
21
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 A function is a special case of relation. 

Definition: Let X and Y be any two sets. A relation f

from X to Y is called a function if for every x ∈ X, there is

a unique element y ∈ Y such that (x, y) ∈ f.

Example: Let X = {1, 2, 3}, Y = {p, q, r} and f = {(1, p), (2,

q), (3, r)} then f(1) = p, f(2) = q, f(3) = r. Clearly f is a

function from X to Y .
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Functions



 Domain and Range of a Function: If f : X → Y is a

function, then X is called the Domain of f and the set Y

is called the codomain of f.

 The range of f is defined as the set of all images under

f. It is denoted by f(X) = {y| for some x in X, f(x) = y}

and is called the image of X in Y . The Range f is also

denoted by Rf .

 Example: If the function f is defined by f(x)=x2 + 1 on

the set {−2, −1, 0, 1, 2}, find the range of f.

Solution: f(−2) = (−2)2 + 1 = 5 f(−1) = (−1)2 + 1 = 2

f(0) = 0 + 1 = 1

f(1) = 1 + 1 = 2

f(2) = 4 + 1 = 5

Therefore, the range of f = {1, 2, 5}.
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 One-to-one(Injective): A mapping f : X → Y is called

one-to-one if distinct elements of X are mapped into

distinct elements of Y ,

 i.e., f is one-to-one if x1 ≠x2 ⇒ f(x1) ≠ f(x2) or equivalently

f(x1) = f(x2) ⇒ x1 = x2 for x1, x2 ∈ X.

Types of Functions 



 Onto(Surjective): A mapping f : X → Y is called onto

if the range set Rf = Y .

 If f : X → Y is onto, then each element of Y is f-image

of atleast one element of X.

 i.e., {f(x) : x ∈ X} = Y .

 If f is not onto, then it is said to be into.
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 Bijection or One-to-One, Onto:

A mapping f : X → Y is called one-to-one, onto or

bijective if it is both one-to-one and onto. Such a

mapping is also called a one-to-one correspondence

between X and Y .
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 Identity function:

Let X be any set and f be a function such that f : X

→ X is defined by f(x) = x for all x ∈ X. Then, f is called

the identity function or identity transformation on X. It

can be denoted by I or Ix.

 Inverse Functions:

A function f : X → Y is aid to be invertible of its

inverse function f−1 is also function from the range of f

into X.

Note: A function f : X → Y is invertible ⇔ f is one-to-

one and onto.
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Constant Functions:

A mapping f: R→ b is called a constant mapping if,

for all a∈A, f (a) = b, a fixed element.

For example f: Z→Z given by f(x) = 0, for all x ∈Z is a

constant mapping.

Composition of Functions:

 Let f : X → Y and g : Y → Z be two functions. Then the

composition of f and g denoted by g ◦ f, is the function

from X to Z defined as (g ◦ f)(x) = g(f(x)), for all x ∈ X.

Example 1: Let X = {1, 2, 3}, Y = {p, q} and Z = {a, b}.

Also let f : X → Y be f = {(1, p), (2, q), (3, q)} and g : Y →

Z be given by g = {(p, b), (q, b)}. Find g ◦ f.

Solution:

g ◦ f = {(1, b), (2, b), (3, b)}.
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 Example2: Let X = {1, 2, 3} and f, g, h and s be the

functions from X to X given by f = {(1, 2), (2, 3), (3, 1)} g

= {(1, 2), (2, 1), (3, 3)} h = {(1, 1), (2, 2), (3, 1)}

s = {(1, 1), (2, 2), (3, 3)} Find f ◦ f; g ◦ f; f ◦ h ◦ g; s ◦ g; g ◦

s; s ◦ s; and f ◦ s.

Solution:

f ◦ g = {(1, 3), (2, 2), (3, 1)}

g ◦ f = {(1, 1), (2, 3), (3, 2)} ≠ f ◦ g

f ◦ h ◦ g = f ◦ (h ◦ g) = f ◦ {(1, 2), (2, 1), (3, 1)} = {(1, 3), (2, 2), (3,

2)}

s ◦ g = {(1, 2), (2, 1), (3, 3)} = g

g ◦ s = {(1, 2), (2, 1), (3, 3)} ∴ s ◦ g = g ◦ s = g

s ◦ s = {(1, 1), (2, 2), (3, 3)} = s

f ◦ s = {(1, 2), (2, 3), (3, 1)} Thus, s ◦ s = s, f ◦ g ≠g ◦ f,

s ◦ g = g ◦ s = g and h ◦ s = s ◦ h = h.
29
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 Example3: Let f(x) = x + 2, g(x) = x − 2 and h(x) 

= 3x for x ∈ R, where R is the set of real                    

numbers. Find g ◦ f; f ◦ g; f ◦ f; g ◦ g; f ◦ h; h ◦ g; h ◦

f; and f ◦ h ◦ g.  

Solution: f : R → R is defined by f(x) = x + 2 f: R → 

R is defined by g(x) = x − 2 h : R → R is defined by 

h(x) = 3x 

g ◦ f : R → R Let x ∈ R. Thus, we can write (g ◦ f)(x) 

= g(f(x)) = g(x + 2) = x + 2 − 2 = x

∴ (g ◦ f)(x) = {(x, x)| x ∈ R} 

(f ◦ g)(x) = f(g(x)) = f(x − 2) = (x − 2) + 2 = x

∴ f ◦ g = {(x, x)| x ∈ R} 

(f ◦ f)(x) = f(f(x)) = f(x + 2) = x + 2 + 2 = x + 4 

∴ f ◦ f = {(x, x + 4)| x ∈ R} 30
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(g ◦ g)(x) = g(g(x)) = g(x − 2) = x − 2 − 2 = x − 4 

⇒ g ◦ g = {(x, x − 4)| x ∈ R} 

(f ◦ h)(x) = f(h(x)) = f(3x) = 3x + 2 

∴ f ◦ h = {(x, 3x + 2)| x ∈ R} 

(h ◦ g)(x) = h(g(x)) = h(x − 2) = 3(x − 2) = 3x − 6 

∴ h ◦ g = {(x, 3x − 6)| x ∈ R} 

(h ◦ f)(x) = h(f(x)) = h(x + 2) = 3(x + 2) = 3x + 6 

∴ h ◦ f = {(x, 3x + 6)| x ∈ R} 

(f ◦ h ◦ g)(x) = [f ◦ (h ◦ g)](x) f(h ◦ g(x)) = f(3x − 6) = 3x − 6 + 

2 = 3x − 4 

∴ f ◦ h ◦ g = {(x, 3x − 4)| x ∈ R}. 
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Thank You
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