M Sc DATA SCIENCE LOCF SYLLABUS 2023

Department of Data Science

School of Computing Sciences St. Joseph's College (Autonomous) Tiruchirappalli - 620002, Tamil Nadu, India

SCHOOLS OF EXCELLENCE WITH CHOICE BASED CREDIT SYSTEM (CBCS) POSTGRADUATE COURSES

St. Joseph's College (Autonomous), an esteemed institution in the realm of higher education in India, has embarked on a journey to uphold and perpetuate academic excellence. One of the pivotal initiatives in this pursuit is the establishment of five Schools of Excellence commencing from the academic year 2014-15. These schools are strategically designed to confront and surpass the challenges of the 21st century.

Each School amalgamates correlated disciplines under a unified umbrella, fostering synergy and coherence. This integrated approach fosters the optimal utilization of both human expertise and infrastructure. Moreover, it facilitates academic fluidity and augments employability by nurturing a dynamic environment conducive to learning and innovation. Importantly, while promoting collaboration and interdisciplinary study, the Schools of Excellence also uphold the individual identity, autonomy, and distinctiveness of every department within.

The overarching objectives of these five schools are as follows:

- 1. Optimal Resource Utilization: Ensuring the efficient use of both human and material resources to foster academic flexibility and attain excellence across disciplines.
- 2. Horizontal Mobility for Students: Providing students with the freedom to choose courses aligning with their interests and facilitating credit transfers, thereby enhancing their academic mobility and enriching their learning experience.
- 3. Credit-Transfer Across Disciplines (CTAD): The existing curricular structure, compliant with regulations from entities such as TANSCHE and other higher educational institutions, facilitates seamless credit transfers across diverse disciplines. This underscores the adaptability and uniqueness of the choice-based credit system.
- 4. Promotion of Human Excellence: Nurturing excellence in specialized areas through focused attention and resources, thus empowering individuals to excel in their respective fields.
- 5. Emphasis on Internships and Projects: Encouraging students to engage in internships and projects, serving as stepping stones toward research endeavors, thereby fostering a culture of inquiry and innovation.
- 6. Addressing Stakeholder Needs: The multi-disciplinary nature of the School System is tailored to meet the requirements of various stakeholders, particularly employers, by equipping students with versatile skills and competencies essential for success in the contemporary professional landscape.

In essence, the Schools of Excellence at St. Joseph's College (Autonomous) epitomize a holistic approach towards education, aiming not only to impart knowledge but also to cultivate critical thinking, creativity, and adaptability – qualities indispensable for thriving in the dynamic global arena of the 21st century.

Credit system

The credit system at St. Joseph's College (Autonomous) assigns weightage to courses based on the hours allocated to each course. Typically, one credit is equivalent to one hour of instruction per week. However, credits are awarded regardless of actual teaching hours to ensure consistency and adherence to guidelines.

The credits and hours allotted to each course within a programme are detailed in the Programme Pattern table. While the table provides a framework, there may be some flexibility due to practical sessions, field visits, tutorials, and the nature of project work.

For postgraduate (PG) courses, students are required to accumulate a minimum of 110 credits, as stipulated in the programme pattern table. The total minimum number of courses offered by the department is outlined in the Programme Structure.

OUTCOME-BASED EDUCATION (OBE)

OBE is an educational approach that revolves around clearly defined goals or outcomes for every aspect of the educational system. The primary aim is for each student to successfully achieve these predetermined outcomes by the culmination of their educational journey. Unlike traditional methods, OBE does not prescribe a singular teaching style or assessment format. Instead, classes, activities, and evaluations are structured to support students in attaining the specified outcomes effectively.

In OBE, the emphasis lies on measurable outcomes, allowing educational institutions to establish their own set of objectives tailored to their unique context and priorities. The overarching objective of OBE is to establish a direct link between education and employability, ensuring that students acquire the necessary skills and competencies sought after by employers.

OBE fosters a student-centric approach to teaching and learning, where the delivery of courses and assessments are meticulously planned to align with the predetermined objectives and outcomes. It places significant emphasis on evaluating student performance at various levels to gauge their progress and proficiency in meeting the desired outcomes.

Here are some key aspects of Outcome-Based Education:

Course: A course refers to a theory, practical, or a combination of both that is done within a semester.

Course Outcomes (COs): These are statements that delineate the significant and essential learning outcomes that learners should have achieved and can reliably demonstrate by the conclusion of a course. Typically, three or more course outcomes are specified for each course, depending on its importance.

Programme: This term pertains to the specialization or discipline of a degree programme.

Programme Outcomes (POs): POs are statements that articulate what students are expected to be capable of by the time they graduate. These outcomes are closely aligned with Graduate Attributes.

Programme Specific Outcomes (PSOs): PSOs outline the specific skills and abilities that students should possess upon graduation within a particular discipline or specialization.

Programme Educational Objectives (PEOs): PEOs encapsulate the expected accomplishments of graduates in their careers, particularly highlighting what they are expected to achieve and perform during the initial years postgraduation.

LEARNING OUTCOME-BASED CURRICULUM FRAMEWORK (LOCF)

The Learning Outcomes-Centric Framework (LOCF) places the learning outcomes at the forefront of curriculum design and execution. It underscores the importance of ensuring that these outcomes are clear, measurable, and relevant. LOCF orchestrates teaching methodologies, evaluations, and activities in direct correlation with these outcomes. Furthermore, LOCF adopts a backward design approach, focusing on defining precise and attainable learning objectives. The goal is to create a cohesive framework where every educational element is in harmony with these outcomes.

Assessment practices within LOCF are intricately linked to the established learning objectives. Evaluations are crafted to gauge students' achievement of these outcomes accurately. Emphasis is often placed on employing authentic assessment methods, allowing students to showcase their learning in real-life scenarios. Additionally, LOCF frameworks emphasize flexibility and adaptability, enabling educators to tailor curriculum and instructional approaches to suit the diverse needs of students while ensuring alignment with the defined learning outcomes.

Some important terminologies

Core Courses (CC): These are compulsory courses that students must undertake as essential components of their curriculum, providing fundamental knowledge within their primary discipline. Including core courses is essential to maintain a standardized academic programme, ensuring recognition and consistency across institutions.

Common Core (CC): A common core course is a shared educational element encompassing fundamental topics across disciplines within a school. It promotes interdisciplinary comprehension and collaboration among students by providing a foundational understanding of key subjects essential for academic and professional success across diverse fields of study.

Elective Courses (ES): Elective courses are offered within the main discipline or subject of study. They allow students to select specialized or advanced options from a range of courses, offering in-depth exposure to their chosen area of study. Typically, ES are more applied in nature and provide a deeper understanding of specific topics.

Generic Elective Courses (EG): These elective courses are chosen from disciplines unrelated to the student's main area of study, aiming to broaden their exposure and knowledge base. As per the Choice Based Credit System (CBCS) policy, students may opt for generic elective courses offered by other disciplines within the college, enhancing the diversity of their learning experience.

Ability Enhancement Course (AE): AE is designed to enhance skills and proficiencies related to the student's main discipline. It aims to provide practical training and hands-on experience, contributing to the overall development of students pursuing academic programmes.

Skill Enhancement Course (SE): SE focus on developing specific skills or proficiencies relevant to students' academic pursuits. While it is open to students from any discipline, SE is particularly beneficial for those within the related academic programme.

Self-paced Learning (SP): This course promotes independent learning habits among students and they have to undergo the course outside the regular class hours within a specified timeframe.

Comprehensive Examinations (CE): These examinations cover detailed syllabi comprising select units from courses offered throughout the programme. They are designed to assess crucial knowledge and content that may not have been covered extensively in regular coursework.

Extra Credit Courses: To support students in acquiring knowledge and skills through online platforms such as Massive Open Online Courses (MOOCs), additional credits are granted upon verification of course completion. These extra credits can be availed across five semesters (2 - 6). In line with UGC guidelines, students are encouraged to enhance their learning by enrolling in MOOCs offered by portals like SWAYAM, NPTEL, and others. Additionally, certificate courses provided by the college are also considered for these extra credits.

Outreach Programme (OR): It is a compulsory course to create a sense of social concern among all the students and to inspire them to dedicated service to the needy.

Course Coding

The following code system (10 alphanumeric characters) is adopted for Postgraduate courses:

23	UXX	0	XX	00/X
Year of Revision	PG Department Code	Semester Number	Course Specific Initials	Running Number/with Choice

Course Specific Initials

- CC Core Course
- CP Core Practical
- ES Elective
- AE Ability Enhancement Course
- SP Self-paced Learning
- EG Generic Elective
- PW Project and Viva Voce
- CE Comprehensive Examination
- OR Outreach Programme
- IS Internship

EVALUATION PATTERN Continuous Internal Assessment

Sl No	Component	Marks Alloted
1	Mid Semester Test	30
2	End Semester Test	30
3	*Three Components $(15 + 10 + 10)$	35
4	Library Referencing (30 hours)	5
	Total	100

Passing minimum: 50 marks

* The first component is a compulsory online test (JosTEL platform) comprising 15 multiple choice questions (10 questions at K1 level and 5 questions at K2 level); The second and the third components are decided by the course in-charge.

Question Paper Blueprint for Mid and End Semester Tests

Duration: 2 Hours Maximum Marks					n Marks: 60			
Section		K levels						
		K1	K2	K3	K4	K5	K6	Marks
A (compulsory	v)	7						7 × 1 = 7
B (compulsory))		5					5 × 3 = 15
C (either or i	type)			3				$3 \times 6 = 18$
D (2 out of 3)	For courses with K5 as the highest cognitive level, one K4 and one K5 question is compulsory. (Note: two questions on K4 and one question on K5)				1	1*		
	For courses with K6 as the highest cognitive level: Mid Sem: two questions on K4 and one question on K5; End Sem: two questions on K5 and one question on K6)				Mid Sem			$2 \times 10 = 20$
					End Sem		em	
					1	1	1*	
	•						Total	60

* Compulsory

Duration: 3 Hours Maximum Marks: 100						
UNIT	Section A (Compulsory)	Section B (Compulsory)	Section C (Eitheror type)		Section D (3 out of 5)	
	K1	K2	К3	K4	К5	K6
UNIT I	2	2	2			
UNIT II	2	2	2			
UNIT III	2	2	2	2*	2*	1*
UNIT IV	2	2	2			
UNIT V	2	2	2			
Marks	$10 \times 1 = 10$	$10 \times 3 = 30$	$5 \times 6 = 30$		$3 \times 10 = 30$	

Question Paper Blueprint for Semester Examination

* For courses with K6 as the highest cognitive level wherein one question each on K4, K5 and K6 is compulsory. (Note: two questions each on K4 and K5 and one question on K6)

Evaluation Pattern for One/Two-credit Courses

Title of the Course	CIA	Semester Examination	Total Marks
Ability Enhancement Course	20 + 10 + 20 = 50	50 (A member from the Department other than the course instructors)	100
Self-paced LearningComprehensive Examination	25 + 25 = 50	50 (<i>CoE</i>)	100
• Internship	100	-	100
Skill Enhancement Course: Soft Skills	100	-	100
Project Work and Viva Voce	100	100	100

Grading System

The marks obtained in the CIA and semester for each course will be graded as per the scheme provided in Table - 1.

From the second semester onwards, the total performance within a semester and the continuous performance starting from the first semester are indicated by Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA), respectively. These two are calculated by the following formulae:

SGPA and CGPA =
$$\frac{\sum_{i=1}^{n} C_i G p_i}{\sum_{i=1}^{n} C_i}$$

$$WAM = \frac{\sum_{i=1}^{n} C_i M_i}{\sum_{i=1}^{n} C_i}$$

Where,

Ci - credit earned for the Course i

Gpi - Grade Point obtained for the Course i

Mi - Marks obtained for the Course i

n - Number of Courses **passed** in that semester

WAM - Weighted Average Marks

Mark Range	Grade Point	Corresponding Grade
90 and above	10	0
80 and above and below 90	9	A+
70 and above and below 80	8	А
60 and above and below 70	7	B+
50 and above and below 60	6	В
Below 50	0	RA

Table - 1: Grading of the Courses for PG

Table - 2: Grading of the Final Performance for PG

ССРА	Grade	Performance	
9.00 and above	0	Outstanding*	
8.00 to 8.99	A+ Excellent*		
7.00 to 7.99	А	Very Good	
6.00 to 6.99	B+	Good	
5.00 to 5.99	В	Above Average	
Below 5.00	RA	Re-appear	

*The Candidates who have passed in the first appearance and within the prescribed duration of the PG programme are eligible. If the Candidates Grade is O/A+ with more than one attempt, the performance is considered "Very Good".

Vision

Forming globally competent, committed, compassionate and holistic persons, to be men and women for others, promoting a just society.

Mission

- Fostering learning environment to students of diverse background, developing their inherent skills and competencies through reflection, creation of knowledge and service.
- Nurturing comprehensive learning and best practices through innovative and value- driven pedagogy.
- Contributing significantly to Higher Education through Teaching, Learning, Research and Extension.

Programme Educational Objectives (PEOs)

- 1. Graduates will be able to accomplish professional standards in the global environment.
- 2. Graduates will be able to uphold integrity and human values.
- 3. Graduates will be able to appreciate and promote pluralism and multiculturalism in working environment.

Programme Outcomes (POs)

- 1. Graduates will be able to apply assimilated knowledge to evolve tangible solution to emerging problems.
- 2. Graduates will be able to analyze and interpret data to create and design new knowledge.
- 3. Graduates will be able to engage in innovative and socially relevant research and effectively communicate the findings.
- 4. Graduates will become ethically committed professional and entrepreneurs upholding human values.
- 5. Graduates imbibed with ethical values and social concern will be able to understand and appreciate cultural diversity, social harmony and ensure sustainable environment.

Programme Specific Objectives (PSOs)

- 1. Graduates will be able to apply data analytical skills that rely on mathematical and statistical methods to solve problems in a data-driven world.
- 2. Graduates will be able to analyse and interpret complex data to produce actionable insights
- 3. Graduates will be able to understand the nuances of data analytical skills to evolve innovative ideas and communicate the social relevance and impact of their analytical findings
- 4. Graduates will become analytical experts and data entrepreneurs with exemplary behaviour safeguarding the public interest.
- 5. Graduates will uphold professional ethics, values, standards and social responsibilities to attain a better and more sustainable future.

PROGRAMME STRUCTURE						
Semester	Course Specification	Number of Courses	Hours	Credits		
1 - 4	Core Course	10	50	47		
1 - 4	Core Practical	4	16	12		
1, 2, 4	Elective	4	20	14		
1	Ability Enhancement Course	1	2	1		
2	Self-paced Learning	1	-	2		
2	Skill Enhancement Course	1	4	3		
2, 3	Generic Elective	2	8	6		
3	Common Core	-	-	-		
4	Internship	1	-	2		
2 - 4	Extra Credit Course	3	-	(9)		
4	Project Work and Viva Voce	1	20	17		
4	Comprehensive Examination	1	-	2		
2 - 4	Outreach Program	-	-	4		
	Total 28 120 110(9)					

	M Sc DATA SCIENCE						
		Course Details			Sche	me of]	Exams
Sem	Course Code	Title of the Course	Hours	Credits	CIA	SE	Final
	23PDS1CC01	Core Course - 1: Fundamentals of Data Science	6	6	100	100	100
	23PDS1CC02	3PDS1CC02 Core Course - 2: Mathematics for Data Science		5	100	100	100
	23PDS1CC03	Core Course - 3: Statistics - 1	6	5	100	100	100
1	23PDS1ES01	Elective - 1: Data Structures and Algorithms	5	3	100	100	100
	23PDS1ES02	Elective - 2: Java Programming	5	3	100	100	100
	23PDS1AE01	Ability Enhancement Course: Data Science Using Excel	2	1	100	-	100
		Total	30	23			
	23PDS2CC04	Core Course - 4: Statistics - 2	5	5	100	100	100
	23PDS2CC05	Core Course - 5: Python Programming	4	4	100	100	100
	23PDS2CP01	Core Practical - 1: Python Programming	4	3	100	100	100
	23PDS2CP02	Core Practical - 2: R Programming	4	3	100	100	100
	23PDS2SP01	Self-paced Learning: MEAN Stack*	-	2	50	50	50
2	23PDS2ES03A	Elective - 3: Software Engineering for Data Science	-	4	100	100	100
	23PDS2ES03B Elective - 3: Distributed Systems		5	4	100	100	100
	23PSS2SE01 Skill Enhancement Course: Soft Skills - Generic Elective - 1 (WS): Refer ANNEXURE 1 - Extra Credit Courses (MOOC/Certificate Courses) - 1		4	3	100	-	100
			4	3	100	100	100
			-	(3)			
	Total		30	27 (3)			
	23PDS3CC06	Core Course - 6: Machine Learning	5	5	100	100	100
	23PDS3CC07	Core Course - 7: Artificial Intelligence and Data Science	4	4	100	100	100
	23PDS3CC08	Core Course - 8: Core Industry Module: Business Analytics	4	4	100	100	100
	23PDS3CC09	Core Course - 9: Research Methodology	5	4	100	100	100
3	23PDS3CP03	Core Practical - 3: Machine Learning	4	3	100	100	100
	23PDS3CP04	Core Practical - 4: Artificial Intelligence	4	3	100	100	100
	-	Generic Elective - 2 (BS): <u>Refer ANNEXURE 2</u>	4	3	100	100	100
	23PDS3IS01	Internship	-	2	100	-	100
	-	Extra Credit Courses (MOOC/Certificate Courses) - 2	-	(3)			
		Total	30	28 (3)	100	100	100
	23PDS4CC10	Core Course - 10: Cloud Computing	5	5	100	100	100
	23PDS4ES04A	Elective - 4: Deep Learning	5	4	100	100	100
4	23PDS4ES04B	Elective - 4: Image Recognition					
	23PDS4PW01	Project Work and Viva Voce	20	17	100	100	100
	23PDS4CE01 Comprehensive Examination*		-	2	50	50	50
	-	Extra Credit Courses (MOOC/Certificate Courses) - 3	-	(3)			
2 4	23DCW/0D01	Outroach Programma (SHEDHEDD)	30	20 (3)			
2 - 4	25PC w40K01	Outreach Programme (SHEPHEKD)	-	4			
1 - 4		i otai (2 years)	140	<u> </u>			

*- for grade calculation 50 marks are converted into 100 in the mark statements

Passed by	Board of Studies held on 18.12.2023
Approved by	48th Academic Council Meeting held on 27.03.2024

ANNEXURE 1 Generic Elective - 1 (WS)*

	Course Details				
School	hool Course Code Title of the Course				
	23PCA2EG01	Applied Statistics Using R			
SCS	23PCS2EG01	Mobile Adhoc Networks (MANET)			
363	23PMA2EG01A	Mathematical Foundations for Computer Applications			
	23PMA2EG01B	Mathematical Foundations for Computer Science			

* Offered to students from other Departments within School

ANNEXURE 2 Generic Elective - 1 (BS)*

	Course Details			
School	Course Code	Title of the Course		
	23PBI3EG02	First Aid Management		
SBS	23PBT3EG02	Food Technology		
	23PBO3EG02	Horticulture and Landscaping		
SLAC	23PEN3EG02	English for Effective Communication		
	23PCO3EG02	Basics of TallyPrime		
	23PCC3EG02	Dynamics of Human Behaviour in Business		
SMS	23PCP3EG02	Social Psychology		
	23PEC3EG02	Managerial Economics		
	23PHR3EG02	Counselling and Guidance		
	23PCH3EG02	Health Science		
CDC	23PEL3EG02	Computer Hardware and Networks		
515	23PPH3EG02A	Physics for Competitive Exams		
	23PPH3EG02B	Nanoscience		

*Offered to students from other Schools

Semester	Course Code	Title of the Course	Hours/Week	Credits
1	23PDS1CC01	Core Course - 1: Fundamentals of Data Science	6	6

	Course	Objectives
--	--------	------------

To Understand Fundamental Concepts of Graph Theory.

To impart knowledge on Trees and Graph Theoretic algorithms.

To understand logical connectives, duality law and normal forms in logic.

To gain proficiency in set theory and its operations.

To explore algebraic structures such as lattices and Boolean algebra.

UNIT I: Introduction of Data Science

Data Science - Data science Venn diagram - Basic terminology - Data science case studies- Types of data - levels of data- Types of data analytics - Descriptive Analytics-Diagnostic analytics- Predictive analytics- Prescriptive analytics- Five steps of Data science

UNIT II: Mathematical Preliminaries

Basic Maths - mathematics as discipline - basic symbols and terminology -linear algebra. Basic Probability - definitions- probability - Bayesian vs frequentist - compound events - conditional probability - rules of probability.

UNIT III: Data Mining and Data Warehousing

Introduction to Data warehousing - Design consideration of data warehouse - Data loading process - case study - Data mining - Data mining techniques - Tools and platforms - case study

UNIT IV: Visualizing Data

Exploratory Data Analysis - Developing the visual aesthetic - chart types - Great visualizations - Reading graphs - Interactive visualizations

UNIT V: Data Science - Recent Trends

Applications of Data Science, recent trends in various data collection and analysis techniques, various visualization techniques, application development methods of used in data science.

Teaching Methodology Lecture-based instruction, Project-based learning, Discovery Learning

Books for Study

- 1. Sinan, O. (2016). Principles of Data Science. Packt Publishing.
- 2. Maheshwari, A. (2023). Data Analytics Made Accessible, (2nd Ed.). Amazon Digital Services.
- 3. Skiena, S. S. (2017). The Data Science Design Manual. Springer International Publishing

Books for Reference

- 1. Jean, H. (2023). Data Science. Certybox Education.
- 2. Pierson, L. (2021). Data Science for Dummies. John Wiley & Sons.
- 3. Grus, J. (2019). Data Science from Scratch: First principles with python. O'Reilly Media.
- 4. Blum, A., Hopcroft, J. & Kannan, R. (2020). *Foundations of Data Science*. Cambridge University Press.

Websites and eLearning Sources

- 1. https://www.analyticsvidhya.com/
- 2. https://www.simplilearn.com
- 3. https://www.ibm.com/in-en/topics/data-science
- 4. https://www.mygreatlearning.com/blog/what-is-data-science/

(18 Hours)

(18 Hours)

(18 Hours)

(18 Hours)

(18 Hours)

Course Outcomes							
CO No.	CO-Statements	Cognitive Levels					
	On successful completion of this course, the students will be able to	(K-Level)					
CO1	define the terms "data" and "analytics" and explain their different types.	K1					
CO2	explain the basic mathematical concepts used in data science.	K2					
CO3	classify the different types of data intensive operations and tools.	K3					
CO4	describe the five steps of the data science process.	K4					
CO5	identify the different tools and methods for analysing data.	K5					
C 06	analyse the recent potential applications and development of data science.	K6					

Relationship Matrix											
Semester	Cour	se Code	1		Т	'itle of th	e Course			Hours	Credits
1	23PD	S1CC01	L	Core C	ourse -	1: Funda	mentals of	f Data Sci	ence	6	6
Course	Programme Outcomes (POs) Programme Specific Outcomes								s (PSOs)	Mean Score of	
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	2	1	3	3	3	2	1	2.4
CO2	2	2	3	2	2	2	2	3	2	2	2.2
CO3	3	2	3	2	2	3	2	3	2	2	2.4
CO4	3	2	2	2	2	3	2	2	2	2	2.2
CO5	2	3	3	2	1	2	3	3	2	1	2.2
CO6	2	3	3	2	1	2	3	3	2	1	2.2
Mean Overall Score										2.3 (High)	

Semester	Course Code	Title of the Course	Hours/Week	Credits
1	23PDS1CC02	Core Course - 2: Mathematics for Data Science	6	5

To introduce students to the field of data science and its various applications To provide students with a foundation in the mathematical and statistical concepts that are essential for data science

To teach students how to collect, clean, and analyse data using data mining and data warehousing techniques

To train students in the use of visualization techniques to communicate the results of their data analysis

To expose students to the latest trends in data science and its applications

UNIT I: Vectors and Matrices

Vectors and Linear Combinations-Lengths and Angles from Dot Products-Matrices and Their Column Spaces-Matrix Multiplication AB and CR Solving Linear Equations Ax = b - Elimination and Back Substitution-Elimination Matrices and Inverse Matrices-Matrix Computations and A = LU-Permutations and Transposes

UNIT II: The Four Fundamental Subspaces

Vector Spaces and Subspaces-Computing the Nullspace by Elimination: A = CR-The Complete Solution to Ax = b - Independence, Basis, and Dimension-Dimensions of the Four Subspaces

UNIT III: Orthogonality and Determinants

Orthogonality of Vectors and Subspaces-Projections onto Lines and Subspaces-Least Squares Approximations-Orthonormal Bases and Gram-Schmidt-The Pseudo inverse of a Matrix 3 by 3 Determinants and Cofactors-Computing and Using Determinants-Areas and Volumes by Determinants UNIT IV: Eigenvalues and Eigenvectors (18 Hours)

Diagonalizing a Matrix-Symmetric Positive Definite Matrices-Complex Numbers and Vectors and Matrices-Solving Linear Differential Equations

UNIT V: The Singular Value Decomposition (SVD) and Linear Transformations (18 Hours) Singular Values and Singular Vectors-Image Processing by Linear Algebra-Principal Component Analysis (PCA by the SVD) The Idea of a Linear Transformation-The Matrix of a Linear Transformation-The Search for a Good Basis

Tasahing Mathadalagy	Lecture-based instruction, Technology-based learning, Group
reaching wiethodology	learning, Individual learning, Inquiry-based learning

Book for Study

1. Strang, G. (2023). Introduction to Linear Algebra, (6th Ed.). Wellesley - Cambridge Press.

Books for Reference

1. Lay, D., Lay, S. & McDonald, J. (2014). Linear Algebra and its Applications, (5th Ed.). Pearsons.

2. Axler, S. (2015). *Linear Algebra Done Right (Undergraduate Texts in Mathematics)*, (3rd Ed.). Springer.

3. Hefferon, J. (2020). *Linear Algebra*, (4th Ed.). Orthogonal Publishing L3c.

4. Philips, J. M. (2021). *Mathematical Foundations for Data Analysi*, (1st Ed.). Springer Nature Switzerland AG.

Website and eLearning Source

1. https://joshua.smcvt.edu/linearalgebra/

(18 Hours)

(18 Hours)

(18 Hours)

	Course Outcomes							
	CO-Statements							
CO No.	On successful completion of this course, the students will be able to							
CO1	recall and reproduce fundamental mathematical concepts relevant to data science	K1						
CO2	explain the underlying principles of mathematical techniques and interpret various fundamental subspaces.	К2						
CO3	apply and utilize eigenvalue and eigenvector concepts to analyze the behavior of linear transformations and diagonalize matrices.	К3						
CO4	analyze and evaluate different linear transformations in terms of their effects on vector spaces and subspaces.	К4						
CO5	evaluate the impact of linear transformations on data quality, interpretability, and computational complexity in various data science scenarios.	К5						
CO6	formulate creative solutions by applying mathematical techniques to optimize linear transformations and matrix operations in data science applications.	K6						

Relationship Matrix											
Semester	Cour	rse Code			Т	itle of the	e Course			Hours	Credits
1	23PD	S1CC02	2	Core C	ourse - 2	2: Mather	natics for	Data Scie	ence	6	5
Course	Pro	ogramm	e Outco	mes (PC)s)	Prog	ramme S	pecific O	outcomes	(PSOs)	Mean Score of
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	2	3	2	2	3	2	3	2	3	2.5
CO2	2	3	3	2	1	2	3	2	1	3	2.2
CO3	3	2	3	2	2	3	2	2	2	2	2.3
CO4	3	3	2	2	1	3	3	3	2	3	2.5
CO5	2	3	3	2	2	3	3	2	2	3	2.5
CO6	2	3	3	2	1	3	3	2	2	3	2.4
Mean Overall Score										2.4 (High)	

Semester	Course Code	Title of the Course	Hours/Week	Credits
1	23PDS1CC03	Core Course - 3: Statistics - 1	6	5

To introduce students to the field of data science and its various applications To provide students with a foundation in the mathematical and statistical concepts that are essential for data science

To teach students how to collect, clean, and analyse data using data mining and data warehousing techniques

To train students in the use of visualization techniques to communicate the results of their data analysis

To expose students to the latest trends in data science and its applications

UNIT I: Introduction to Statistics

Introduction-Data Collection and Descriptive Statistics-Inferential Statistics and Probability Models-Populations and Samples-A Brief History of Statistics- **Organization and Presentation of Data**-Origin and development of Statistics, Scope, limitation and misuse of statistics. Types of data: primary, secondary, quantitative and qualitative data. Types of Measurements: nominal, ordinal, discrete and continuous data. Presentation of data by tables: construction of frequency distributions for discrete and continuous data, graphical representation of a frequency distribution by histogram and frequency polygon, cumulative frequency distributions

UNIT II: Descriptive Statistics

Introduction-Describing Data Sets-Frequency Tables and Graphs-Relative Frequency Tables and Graphs-Grouped Data, Histograms, Ogives, and Stem and Leaf Plots-Summarizing Data Sets- Sample Mean, Sample Median, and Sample Mode-Sample Variance and Sample Standard Deviation-Sample Percentiles and Box Plots-Chebyshev's Inequality-Normal Data Sets-Paired Data Sets and the Sample Correlation Coefficient - **Correlation:** Scatter plot, Karl Pearson coefficient of correlation, Spearman's rank correlation coefficient, multiple and partial correlations (for 3 variates only).

Unit III: Random Variables and Expectation

Random Variables-Types of Random Variables-Jointly Distributed Random Variables- Independent Random Variables-Conditional Distributions-Expectation-Properties of the Expected Value-Expected Value of Sums of Random Variables-Variance-Covariance and Variance of Sums of Random Variables-Moment Generating Functions-Chebyshev's Inequality and the Weak Law of Large Numbers- **Special random variables:** The Bernoulli and Binomial Random Variables-Computing the Binomial Distribution Function-The Poisson Random Variable-Computing the Poisson Distribution Function-The Hypergeometric Random Variable- The Uniform Random Variable- Normal Random Variables-Exponential Random Variables-The Poisson Process-The Gamma Distribution-Distributions Arising from the Normal-The Chi- Square Distribution-The t-Distribution-The F Distribution-The Logistics Distribution

UNIT IV: Distributions of Sampling Statistics

Introduction-The Sample Mean-The Central Limit Theorem-Approximate Distribution of the Sample Mean, the need for larger samples -The Sample Variance-Sampling Distributions from a Normal Population-Distribution of the Sample Mean, Joint Distribution of X and SSampling from a Finite Population- **Parameter estimation:** Introduction-Maximum Likelihood Estimators-Interval Estimates-Confidence Interval for a Normal Mean When the Variance is Unknown-Confidence Intervals for the Variance of a Normal Distribution - Estimating the Difference in Means of Two Normal Populations-Approximate Confidence Interval for the Mean of a Bernoulli Random Variable-Confidence Interval of the Mean of the Exponential Distribution-The Bayes Estimator

(18 Hours)

(18 Hours)

(18 Hours)

(18 Hours)

UNIT V: Basics and Elements of Probability

Random experiment, sample point and sample space, event, algebra of events. Definition of Probability: classical, empirical and axiomatic approaches to probability, properties of probability. Theorems on probability, conditional probability and independent events, Laws of total probability, Baye's theorem and its applications-Introduction-Sample Space and Events- Venn Diagrams and the Algebra of Events-Axioms of Probability-Sample Spaces

Having Equally Likely Outcomes

Taaahing Mathadalagy	Lecture, Problem solving and case studies, Collaborative learning,						
reaching wiethouology	Interactive online sources, Visualization techniques						

Books for Study

- 1. Ross, S. M. (2023). *Introduction to Probability and Statistics for Engineers and Scientists*, (5th Ed.). Elsevier Academic Press.
- 2. Rohatgi, V. K., & Saleh, E. (2015). *An Introduction to Probability and Statistics*, (3rd Ed.). John Wiley & Sons Inc.
- 3. Gupta, S. C., & Kapoor, V. K. (2014). *Fundamentals of Mathematical Statistics*, (11th Ed.) Sultan Chand & Sons.

Book for Reference

1. Frost, J. (2020). Introduction to Statistics: An Intuitive Guide for Analyzing Data and Unlocking Discoveries. Jim Publishing.

Websites and eLearning Sources

- 1. https://onlinestatbook.com/2/ https://www.simplilearn.com/tutorials/statistics-tutorial
- 2. https://towardsdatascience.com/fundamentals-of-statistics-for-data-scientists-and-dataanalysts-69d93a05aae7

Course Outcomes							
	CO-Statements	Cognitive					
CO No.	On successful completion of this course, the students will be able to	Levels (K-Level)					
CO1	recall the basic statistical concepts, formulas, and definitions	K1					
CO2	interpret the statistical findings and results in a clear and coherent manner	K2					
CO3	apply the different statistical Methods on datasets	K3					
CO4	analyse and evaluate the validity and reliability of statistical data	K4					
CO5	determine the shape of the distribution of data	K5					
CO6	design and execute statistical experiments or studies to investigate specific research questions	K6					

Relationship Matrix											
Semester	Cour	rse Code			T	itle of the	e Course			Hours	Credits
1	23PD	S1CC03	3		Core C	Course - 3	B: Statistic	cs - 1		6	5
Course	Pro	ogramm	e Outco	mes (PC)s)	Prog	ramme S	pecific O	utcomes	(PSOs)	Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs
CO1	3	3	3	2	1	3	3	3	2	1	2.4
CO2	2	2	3	2	2	2	2	3	2	2	2.2
CO3	3	2	3	2	2	3	2	3	2	2	2.4
CO4	3	2	2	2	2	3	2	2	2	2	2.2
CO5	2	3	3	2	1	2	3	3	2	1	2.2
CO6	2	3	3	2	1	2	3	3	2	1	2.2
Mean Overall Score										2.3 (High)	

Semester	Course Code	Title of the Course	Hours/Week	Credits
1	23PDS1ES01	Elective - 1: Data Structures and Algorithms	5	3

Course Objectives
To understand fundamental concepts of Data Structures
To enhance the student's ability to deal with problem solving techniques
To enable the students for appropriate use of hashing techniques
To enrich the proper understanding of various sorting techniques
To choose appropriate graph techniques that the students can apply in various fields.

UNIT I: Basic Concepts

Basic steps in complete development of Algorithm - Analysis and complexity of Algorithm - Asymptotic notations - Problem Solving techniques and examples. ADT: List ADT, Stacks ADT, Queue ADT

UNIT II: Algorithm Design Mode

Greedy Method - Divide and Conquer - Dynamic Programming - Backtracking - Branch and Bound Trees: Preliminaries Binary Tree, Search Tree ADT, Binary Search Trees, AVL Trees, Tree Traversals, B-Trees

UNIT III: Hashing

General Idea, Hash Function, Separate Chaining, Open Addressing, Rehashing, Extendible Hashing, Priority Queues, Model, Simple Implementations, Binary Heap, Applications

UNIT IV: Sorting

Sorting - Preliminaries, Insertion Sort, Shell Sort, Heap Sort, Merge Sort, Quick Sort, External Sorting

UNIT V: Graphs

Definitions, Topological Sort, Shortest Path Algorithm, Minimum Spanning Tree, Application of Depth First Search. Theory of NP-Completeness: Formal language framework,

Complexity classes - P, NP - NP Reducibility and NP-Complete, NP-Hard

Teaching Methodology	Instructive method, Problem solving, Group Discussion
0 0	

Books for Study

- 1. Aho Hopcroft, J. E., & Ullman, J. D. (2009). *Design and Analysis of Computer Algorithms*, (1st Ed.). Addison-Wesley.
- 2. Horowitz., & Sahani. (2008). *Fundamentals of Computer Algorithms*, (2nd Ed.). Computer Science Press.
- 3. Weiss. (2002). *M. A. Data Structure and Algorithm Analysis in C*, (2nd Ed.). Pearson Education.

Books for Reference

- 1. Baase, S. & Gelder, A. V. (2008). *Computer Algorithms Introduction to Design and Analysis*. Pearson Education.
- 2. Goodrich, M. T. & Tamassia, R. (2006). *Algorithm Design: Foundations, Analysis, and Internet examples.* Wiley.

Websites and eLearning Sources

- 1. https://www.programiz.com/dsa
- 2. https://www.tutorialspoint.com/data_structures_algorithms/index.htm
- 3. https://www.javatpoint.com/data-structure-tutorial

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

	Course Outcomes	
	CO-Statements	Cognitive
CO No.	On successful completion of this course, the students will be able to	Levels (K-Level)
CO1	recall the basic concepts of data structures and algorithms	K1
CO2	interpret the algorithm design mode	K2
CO3	apply the different hashing techniques	K3
CO4	analyze the sorting techniques	K4
CO5	determine the usages of graphs	K5
CO6	discuss the various NP completeness	K6

Relationship Matrix											
Semester	Cour	rse Code]	litle of th	e Course	•		Hours	Credits
1	23PE	OS1ES01		Elect	ive - 1:	Data Stru	ctures and	d Algorith	nms	5	3
Course	Pre	ogramm	e Outco	mes (PC)s)	Prog	ramme S	pecific O	utcomes	(PSOs)	Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs
CO1	2	1	2	2	2	2	2	3	2	2	2
CO2	3	2	3	1	3	3	2	2	3	3	2.5
CO3	2	3	3	3	3	2	2	3	2	2	2.5
CO4	3	2	2	2	2	3	3	3	3	3	2.6
CO5	2	2	1	3	2	3	2	3	2	3	2.3
CO6	3	2	2	2	2	2	2	2	2	2	2.1
Mean Overall Score 2.						2.3 (High)					

Semester	Course Code	Title of the Course	Hours/Week	Credits
1	23PDS1ES02	Elective - 2: Java Programming	5	3

Course Objectives
To develop knowledge and understand the fundamental concepts of Java Programming
To enhance the problem-solving skills with object-oriented programming
To enable the use of exception handling
To enrich a proper understanding of multithreading
To deploy event handling techniques to utilize the packages

UNIT I: Introduction to Java

Overview - Features - Fundamental OOPS concepts - JDK - JRE - JVM -Structure of a Java program - Data types - Variables - Arrays - Operators -Keywords - Naming Conventions - Control statements, Type conversion and Casting - Scanner - String - equals(), equals Ignore Case(), length()

UNIT II: Classes and Objects

Class - Objects - Methods - Method Overloading - Constructors - Constructor Overloading - this keyword - usage of static with data and methods - Garbage Collection - Access Control Inheritance: Concept - extends keyword - Single and Multilevel Inheritance - Composition - super keyword - Method Overriding - Abstract Classes - Dynamic Method Dispatch - Usage of final with data, methods and classes. Packages and Interfaces: Concepts - package and import keywords - Defining, Creating and Accessing a Package - Interfaces - Multiple Inheritance in Java, Extending and Initialising fields in Interfaces.

UNIT III: Exception Handling

Exception handling- Types of Exceptions- try, catch, throw, throws and finally keywords - User defined Exceptions. JDBC: Database Connectivity- Types of JDBC drivers- Executing statements Prepared statements- Callable statements - Mapping SQL types to Java Result Set Meta data

UNIT IV: Multithreading

Introduction - Life Cycle of a Thread, Thread class and Runnable Interface, Thread Priorities, Synchronisation. GUI Programming with JavaFX: JavaFX Basic Concepts - Packages - Stage and Scene Classes - Nodes and Scene Graphs - Layouts - The Application Class and the Lifecycle Methods - Launching a JavaFX Application - JavaFX Application Skeleton - Compiling and Running - Application Thread. JavaFX Controls: Label - Button - Image - Radio Button - Check Box - List View Combo Box-Text Field - Scroll Pane

UNIT V: Event Handling

Event Handling - Input Event, Action Event and Window Event. Java Library: Java.util - List, Array List

Teaching Methodology	Videos, PPT, Blackboard, Demonstration, Exercises
----------------------	---

Book for Study

1. Schildt, H. (2014). Java: The Complete Reference. McGraw-Hill Education Group.

Books for Reference

- 1. Eckel, B. (2006). Thinking in Java, (4th Ed.). Pearson Education.
- 2. Liang, Y. D. (2015). Intro to Java Programming, brief version. Pearson Higher Ed.
- 3. Holmes, J. B. & Joyce, T. D. (2001). *Object-oriented Programming with Java*. Jones & Bartlett Loorning

Learning.

Websites and eLearning Sources

- 1. http://docs.oracle.com/javase/tutorial/java/index.html/
- 2. http://www.java2s.com/Tutorial/Java/CatalogJava.htm/
- 3. https://www.edureka.co/blog/object-oriented-programming

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

	ourse Outcomes	
	CO-Statements	Cognitive
CO No.	On successful completion of this course, the students will be able to	Levels (K-Level)
CO1	recall the basic concepts of programming	K1
CO2	interpret the classes and objects	K2
CO3	apply the different object-oriented concepts	K3
CO4	analyze the usages of exception handling	K4
CO5	determine the GUI programming	K5
CO6	discuss the various types of event handling	K6

Relationship Matrix											
Semester	Cour	rse Code	2]	Title of th	e Course	•		Hours	Credits
1	23PE	OS1ES02	2		Electiv	e - 2: Jav	va Program	mming		5	3
Course Programme Outcomes (POs))s)	Prog	ramme S	pecific O	utcomes	(PSOs)	Mean Score of
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	2	3	2	3	3	3	3	3	2	3	2.7
CO2	2	3	2	2	3	2	3	2	2	2	2.3
CO3	3	3	2	2	2	2	2	2	2	2	2.2
CO4	2	2	2	3	2	3	2	2	2	3	2.3
CO5	3	3	2	2	1	1	2	3	2	3	2.2
CO6	3	3	2	2	2	2	2	2	2	2	2.2
	Mean Overall Score 2.3 (High)							2.3 (High)			

Semester	Course Code	Title of the Course	Hours/Week	Credits
1	23PDS1AE01	Ability Enhancement Course: Data Science Using Excel	2	1

Course Objectives
To understand the basic components of Excel, including worksheets, workbooks, tabs, and ribbons
To gain proficiency in worksheet basics, including data entry, formatting, and organization
To apply formulas and functions effectively to perform calculations and analyse data in Excel
To explore data visualization techniques in Excel
To learn how to create pivot tables, add slicers and timelines, and manipulate calculated fields and
items

UNIT I: Getting Started with Excel

Worksheets and Workbooks- Navigation with Keyword- Tabs and Ribbons - File Menu - Quick Access Toolbar -Excel options - Create a new workbook- Understanding Worksheet Basics

UNIT II: Protecting, Importing and exporting Data from Excel

Protect Workbook - Protect sheet and Allow Edit Ranges- Importing data into Excel: Importing from Text - Importing from Web - Importing from Database- Exporting Data from Excel: Export to file-Export to SharePoint List

UNIT III: Perform Operations with Formulas and Functions

Understanding formulas - operators in formula - Defined Names - Calculations - functions in formula - Logical functions - Summarizing functions - Text functions - Lookup functions - Date and Time functions - Math functions - Statistical functions

UNIT IV: Data Visualization with New Chart Types

Chart types and when to use them - Waterfall Chart- Histogram - Box and Whisker Chart- Tree map Chart - Gantt Chart - Milestone Chart - Macros in Excel: VBA Quick View - Enabling Developer Tab -Create Macro - Record Macro

UNIT V: Putting Data into Pivots

Understanding the terminologies- Verify the source - Format Data for Sync- Recommended Pivot Tables - Setting Pivot table default layout - Adding Slicers & Timelines - Adding / Deleting calculated fields from Pivot - Adding / Deleting calculated items from Pivot -Consolidate data from different sources in Pivot

Teaching Methodology	Demonstration and Explanation, Hands-on Practice, Individual Projects

Books for Study

- 1. Nigam, M. (2019). Advanced analytics with Excel, (2nd Ed.). BPB Publications.
- 2. Wayne, L. W. (2019). *Microsoft Excel 2019: Data Analysis & Business Model*, (1st Ed.). PHI Learning Pvt. Ltd.

Books for Reference

- 1. Zhou, H. (2020). *Learn Data Mining through Excel: A step-by-step approach for understanding Machine Learning Method*, (1st Ed). Apress.
- 2. Lalwani, L. (2019). Excel 2019 all-in-one, (1st Ed). BPB Publications

Websites and eLearning Sources

- 1. https://www.techtarget.com/searchenterprisedesktop/definition/Excel
- 2. https://www.w3schools.com/EXCEL/index.php
- 3. https://support.microsoft.com/en-us/office/excel-video-training-9bc05390-e94c-46af-a5b3d7c22f6990bb
- 4. https://www.techtarget.com/searchenterprisedesktop/definition/Excel

(6 Hours)

(6 Hours)

(6 Hours)

(6 Hours)

(6 Hours)

Course Outcomes								
CO No.	CO-Statements	Cognitive						
	On successful completion of this course, the students will be able to	Levels (K-Level)						
CO1	analyze and interpret data using Excel's data analysis tools	K4						
CO2	evaluate and compare different data analysis techniques and approaches in Excel	K5						
CO3	design and create comprehensive data visualizations, reports, and dashboards using Excel's advanced charting and visualization features	K6						

Relationship Matrix											
Semester	Course Code Title of the Course H									Hours	Credits
1	23PDS	51AE01	Abili	ty Enha	ncemen	t Course	: Data Sc	ience Usi	ng Excel	2	1
Course	Pro	ogramm	e Outco	mes (PC	Ds)	Prog	gramme S	pecific O	(PSOs)	Mean Score of	
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	2	2	2	2	3	2	2	2	2	2.2
CO2	2	3	3	2	1	2	3	3	2	1	2.2
CO3	2	3	3	2	1	2	3	3	2	1	2.2
								Μ	ean Over	all Score	2.2 (High)

Semester	Course Code	Title of the Course	Hours/Week	Credits
2	23PDS2CC04	Core Course - 4: Statistics - 2	5	5

To identify the four steps of hypothesis testing

To gain a thorough understanding of applied principles of statistics

To develop knowledge and skills in theoretical, computational and application-oriented statistics

To apply the methods of analysis of variance

To understand and apply the concept of non-parametric tests

UNIT I: Introduction to Statistics and Hypothesis Testing

Population and Statistics - Finite and Infinite population - Parameter and Statistics - Types of sampling - Sampling Distribution - Sampling Error - Standard Error - Test of significance - concept of hypothesis - types of hypothesis - Errors in hypothesis-testing - Critical region - level of significance - Power of the test - p-value. Hypothesis testing: Introduction-Significance Levels-Tests Concerning the Mean of a Normal Population-Case of Known Variance-Case of Unknown Variance: The t-Test

UNIT II: Hypothesis Testing-II

(15 Hours) Students t-distribution and its properties (without proofs) - Single sample mean test - Independent sample mean test - Paired sample mean test - Tests of proportion (based on t distribution) - F distribution and its properties (without proofs) - Tests of equality of twovariances using F-test -Chi-square distribution and its properties (without proofs) - Chi-squaretest for independence of attributes - Chi-square test for goodness of fit.

UNIT III: Regression

Introduction-Least Squares Estimators of the Regression Parameters-Distribution of the Estimators-Statistical Inferences About the Regression Parameters- The Coefficient of Determination and the Sample Correlation Coefficient-Analysis of Residuals: Assessing the Model-Transforming to Linearity-Weighted Least squares-Polynomial Regression - Multiple Linear Regression-Predicting Future Responses - Logistic Regression Models for Binary Output Data

UNIT IV: Analysis of variance

Introduction-An Overview-One-Way Analysis of Variance-Multiple Comparisons of Sample Means-One-Way Analysis of Variance with Unequal Sample Sizes-Two-Factor Analysis of Variance: Introduction and Parameter Estimation-Two-Factor Analysis of Variance: Testing Hypotheses-Two-Way Analysis of Variance with Interaction

UNIT V: Nonparametric hypothesis tests

Introduction-The Sign Test-The Signed Rank Test-The Two-Sample Problem-The Classical Approximation and Simulation-Wilcoxon Signed Rank Test for one and paired samples-TheRuns Test for Randomness -Median test and Mann-Whitney-Wilcoxon tests for two samples.

Taa ahira a Mathadala ay	Interactive Lectures, Hands-on Statistical Software Usage, Problem-
Teaching Methodology	Solving Sessions, Research Projects and Presentations

Books for Study

- 1. Sheldon, M. R. (2023). Introduction to Probability and Statistics for Engineers and Scientists, (5th Ed.). Elsevier Academic Press.
- 2. Gupta, S. C. & Kapoor, V. K. (2020). Fundamentals of Mathematical Statistics, (12th Ed.). Sultan Chand & Sons.
- 3. Caffo, B. (2016). Statistical Inference for Data Science, (1st Ed.). Learnpub.

Books for Reference

- 1. Allen, B. (2014), Downey. Think Stats Exploratory Data Analysis, (2nd Ed.). O'reilly.
- 2. Kreyszig, E. (2011). Advanced Engineering Mathematics, (10th Ed.). Wiley Publications.
- 3. Frost, J. (2019). Introduction to Statistics: An Intuitive Guide for Analyzing Data and Unlocking Discoveries. Jim Publishing.

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

Websites and eLearning Source

- 1. https://onlinestatbook.com/2/
- 2. https://www.simplilearn.com/tutorials/statistics-tutorial
- 3. https://towardsdatascience.com/fundamentals-of-statistics-for-data-scientists-and-data-analysts-69d93a05aae7

	Course Outcomes										
	CO-Statements	Cognitive									
CO NO.	On successful completion of this course, students will be able to	(K - Level)									
CO1	recall the fundamental statistical concepts, methods, and terminologies	K1									
CO2	explain the principles and theories behind statistical methodologies and hypothesis testing	K2									
CO3	apply various statistical techniques to analyse data and draw meaningful inferences	К3									
CO4	analyse and evaluate statistical models, hypothesis tests, and their outcomes	K4									
CO5	evaluate research studies, statistical analyses, and their implications for decision-making and problem-solving	К5									
CO6	design and conduct experiments, utilizing appropriate statistical tools and methods	K6									

Relationship Matrix											
Semester	Course Code Title of the Course								Hours	Credits	
2	23PD	S2CC04	1		Core (Course - 4	4: Statistic	cs - 2		5	5
Course	Pr	ogramm	e Outco	mes (PC	Ds)	Prog	Programme Specific Outcomes				Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Scores of COs
CO1	3	3	3	2	1	3	3	3	2	1	2.4
CO2	2	2	3	2	2	2	2	3	2	2	2.2
CO3	3	2	3	2	2	3	2	3	2	2	2.4
CO4	3	2	2	2	2	3	2	2	2	2	2.2
CO5	2	3	3	2	1	2	3	3	2	1	2.2
CO6	2	3	3	2	1	2	3	3	2	1	2.2
Mean Overall Score										2.3 (High)	

Semester	Course Code	Title of the Course	Hours/Week	Credits
2	23PDS2CC05	Core Course - 5: Python Programming	4	4

Course Objectives
To develop knowledge and to understand the fundamental concepts of Python Programming
To enhance the problem-solving skills with control structures and loops
To enable the use of object-oriented programming
To enrich a proper understanding of exception handling
To deploy data visualization using the packages

UNIT I: Introduction to Python programming

Introduction to python programming - Programming Style and Documentation - Programming Errors -Introduction to Graphics Programming. Elementary Programming: Input - Output - Identifiers -Variables, Assignment Statements and Expressions - Simultaneous Assignments - Named Constants -Numeric Data Types and Operators - Evaluating Expressions and Operator Precedence - Augmented Assignment Operators - Type Conversion and Rounding. Mathematical Functions, Strings and Objects: Introduction - Common Python Functions - Strings and Characters - Introduction to Objects and Methods - Formatting Numbers and Strings - Drawing various shapes with Colors and Fonts

UNIT II: Control Structure and Loops

Selections - Introduction - Boolean Types, Values and Expressions - Generating Random Numbers -Different forms of if statements - Logical Operators - Conditional Expressions - Operator Precedence and Associativity. Loops: Introduction - while, for, Nested Loops - break and Continue

UNIT III: Object Oriented Programming Concepts

Functions: Introduction - Defining and calling a function - Return single and multiple values -Positional, Keyword and Default Arguments - Passing Arguments by Reference Values - Modularizing Code - Function Abstraction and Stepwise Refinement - Recursion. Objects and Classes: Introduction -Defining Classes for Objects - UML Class Diagrams - Immutable vs Mutable Objects - Hiding Data Fields - Class Abstraction and Encapsulation - Object Oriented Thinking. Inheritance and Polymorphism: Superclasses and Subclasses - Overriding methods - Object class - Polymorphism and Dynamic binding.

UNIT IV: Exception Handling

More on Strings and Special Methods - Introduction - Str class - Operator Overloading and Special Methods. Lists - Basics - Copying Lists - Passing Lists to Functions - Returning a List from a Function - Searching, Sorting Lists. Multidimensional Lists - Processing Two - Dimensional Lists - Passing Two - Dimensional Lists to Functions - Multidimensional Lists. Tuples, Sets and Dictionaries - Introduction - Tuples - Sets - Comparing the Performance of Sets and Lists - Dictionaries. Files and Exception Handling - Introduction - Text Input and Output - File Dialogs - Retrieving Data from Web - Exception Handling - Raising Exceptions - Processing Exceptions using Exception Objects - Defining Custom **Exception Classes - Binary IO Using Pickling**

UNIT V: Data Visualization

Matplotlib: Pie Chart - Violin Plot - Scatter Plot - Histogram - Bar Chart - Area Plot - Quiver Plot

- Mesh Plot - Contour Plot. Seaborn: Visualization for Categorical Variable - Visualization forContinuous Variable.

Taaahing Mathadalagu	Lectures and Presentations, Hands-on Programming Exercises and Labs,
Teaching Methodology	Project Work

Book for Study

1. Daniel, Y.L. (2013). Introduction to Programming using Python. (2nd Ed.). Pearson Education.

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

Books for Reference

- 1. Motwani, B. (2020). Data Analytics using Python. Wiley.
- 2. Downey, A.B. (2016). *Think Python. How to Think Like a Computer Scientist*, (2nd Ed.). O 'Reilly Publishers.
- 3. Wade, C. (2022). The Python Workshop. (2nd Ed.). Packt.
- 4. Bhasin, H. (2018). Python for Beginners, (1st Ed.). New Age International Publishers.
- 5. Brown, M.C. (2018). Python: The Complete Reference. (4th Ed.). McGraw-Hill.

Websites and eLearning Sources

- 1. https://realpython.com, http://docs.python.org, http://diveintopython.org/,
- 2. https://www.w3schools.com/python/, https://www.tutorialspoint.com/python/index.htm

Course Outcomes									
CO No.	CO-Statements	Cognitive							
	On successful completion of this course, students will be able to	(K - Level)							
CO1	recall the basic concepts of programming	K1							
CO2	interpret the classes and objects	K2							
CO3	apply the different object-oriented concepts	К3							
CO4	analyse the usages of exception handling	K4							
CO5	determine the Python data structure	K5							
CO6	discuss the various types of visualization tools	K6							

Relationship Matrix											
Semester	Course Code Title of the Course									Hours	Credits
2	23PD	S2CC05	5	Co	re Cour	se - 5: Py	thon Pro	gramming	g	4	4
Course	Pro	gramm	e Outco	omes (P	Os)	Pro	gramme	Specific	Outcome	es (PSOs)	Mean
Outcomes	PO1 PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Scores of	
Outcomes	101	102	100	104	100	1001	1502	1505	1004	1000	COs
CO1	2	3	2	3	3	3	3	3	2	3	2.7
CO2	2	3	2	2	3	2	3	2	2	2	2.3
CO3	3	3	2	2	2	2	2	2	2	2	2.2
CO4	2	2	2	3	2	3	2	2	2	3	2.3
CO5	3	3	2	2	1	1	2	3	2	3	2.2
CO6	3	3	2	2	2	2	2	2	2	2	2.2
									Mean (Overall Score	2.3 (High)

Semester	Course Code	Title of the Course	Hours/Week	Credits
2	23PDS2CP01	Core Practical - 1: Python Programming	4	3

Course Objectives				
To develop knowledge and understand the fundamental concepts of Python Programming				
To enhance the problem-solving skills with control structures and loops				
To enable the use of object-oriented programming				
To enrich a proper understanding of exception handling				
To deploy data visualization using the packages				

List of Exercises

- 1. Program using basic data types and operators
- 2. Program involving Mathematical functions and String Manipulations
- 3. Program using List, Tuple, Set and Dictionaries
- 4. Program using control statements
- 5. Program using loops
- 6. Program using classes and objects
- 7. Program using Inheritance
- 8. Program using Exception Handling
- 9. Data Visualization using

Matplotlib

10. Data Visualization using

Seaborn

Taa ahing Mathadalagu	Lectures and Presentations, Hands-on Programming Exercises and Labs,
reaching Methodology	Project Work

Course Outcomes					
CO No.	CO-Statements	Cognitive			
	On successful completion of this course, students will be able to	Levels (K - Level)			
CO1	recall the basic concepts of programming K1				
CO2	interpret the classes and objects K2				
CO3	apply the different object-oriented concepts K3				
CO4	analyse the usages of exception handling K4				
CO5	determine the Python data structure K5				
CO6	discuss the various types of visualization tools K6				

Relationship Matrix											
Semester	Cou	rse Code		Title of the Course				Hours	Credits		
2	23PE	DS2CP01	L	Core	Practic	al - 1: Pytl	non Progra	mming		4	3
Course	Pr	ogramn	ne Outco	omes (PC	Ds)	Prog	gramme Sj	pecific Ou	tcomes (I	PSOs)	Mean Scores of
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	2	3	2	3	3	3	3	3	2	3	2.7
CO2	2	3	2	2	3	2	3	2	2	2	2.3
CO3	3	3	2	2	2	2	2	2	2	2	2.2
CO4	2	2	2	3	2	3	2	2	2	3	2.3
CO5	3	3	2	2	1	1	2	3	2	3	2.2
CO6	3	3	2	2	2	2	2	2	2	2	2.2
Mean Overall Score								2.3 (High)			

Semester	Course Code	Title of the Course	Hours/Week	Credits
2	23PDS2CP02	Core Practical - 2: R Programming	4	3

Course Objectives				
To develop proficiency in statistical tools and software				
To enhance analytical skills through practical application				
To promote critical thinking and problem-solving abilities				
To cultivate effective data interpretation and communication				
To encourage collaborative learning and research skills				

List of Exercises

- 1. Program for descriptive statistics.
- 2. Program to perform a t-test.
- 3. Program to perform a simple linear regression analysis.
- 4. Program to perform a chi-square test on a contingency table to test for independence.
- 5. Program to perform a one-way ANOVA on a given dataset.
- 6. Program for performing a two-sample t-test to compare means of two independent samples.
- 7. Program for performing nonparametric tests.
- 8. Program to analyze residuals from a regression model for assessing the model's adequacy.
- 9. Program for plotting various probability distributions.
- 10. Program for analysing a time series dataset.

Teaching MethodologyHands-on Practice, Problem-Solving, Online Learning

Course Outcomes								
	CO-Statements	Cognitive						
CO No.	On successful completion of this course, students will be able to	Levels (K - Level)						
CO1	recall key R programming, statistical, and data analysis concepts	ecall key R programming, statistical, and data analysis concepts K1						
CO2	explain principles behind statistical methods, hypothesis testing, and R	K)						
	programming logic	N 2						
CO3	apply R for statistical analyses, hypothesis testing, and	K3						
005	visualization	KJ						
CO4	analyze R outputs, interpret results, and assess statistical models K4							
CO5	evaluate Statistical methods and R packages for various data types K5							
CO6	design custom R scripts for research and data visualization	K6						

Relationship Matrix											
Semester	Course Code T					Title of the Course			Hours	Credits	
2	23PDS2CP02 Core P				ore Pra	ctical - 2	2: R Prog	amming		4	3
Course	Pro	ogramm	e Outco	mes (PC	Ds)	Prog	ramme S	pecific O	utcomes	(PSOs)	Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Scores of COs
CO1	3	3	3	2	1	3	3	3	2	1	2.4
CO2	2	2	3	2	2	2	2	3	2	2	2.2
CO3	3	2	3	2	2	3	2	3	2	2	2.4
CO4	3	2	2	2	2	3	2	2	2	2	2.2
CO5	2	3	3	2	1	2	3	3	2	1	2.2
CO6	2	3	3	2	1	2	3	3	2	1	2.2
								N	lean Ove	rall Score	2.3 (High)

Semester	Course Code	Title of the Course	Hours/Week	Credits
2	23PDS2SP01	Self-paced Learning: MEAN Stack	-	2

Course Objectives				
To develop knowledge to understand the fundamental concepts of Java script				
To enhance the skills working with MongoDB				
To enable the use of express.js				
To enrich a proper understanding of node.js				
To deploy a form using angular.js				

UNIT I: MEAN Stack

Overview - Architecture - Need - Advantages - Disadvantages - Uses of MEAN Stack - Building blocks - Setup - Deployments.

UNIT II: MongoDB

Structure - Working with MongoDB - Shell Commands - Native Commands - Models - Mongoose

UNIT III: Express

Installing and Setting Up things - Build a Web Application with Express - Authentication - Authenticate and Authorize Your Users with Passport - Communicate in Real-Time with Socket.IO

UNIT IV: Angular.js

Introduction to AngularJS - First AngularJS application - Single Page Applications - Controllers - Models - View - Expressions - Filters - Scopes - Angular Form.

UNIT V: Node.js

Overview - Setting up things - Building Blocks -Npm - Using third party packages - Working with Node.js

Teaching Methodology	Videos, PPT, Blackboard, Demonstration, Exercises
-----------------------------	---

Books for Study

1. Ihrig, J.C. (2015). Full Stack JavaScript Development with MEAN: MongoDB, Express, Angular JS, and Node.JS, Site point.

Books for Reference

- 1. Naik, G.P. (2023). *MEAN Stack Web Development Explained to Novice Learners (Vol I)*, Shashwat Publication.
- 2. Elron, E. (2016). Pro MEAN Stack Development, Apress.

Website and eLearning Source

- 1. https://www.javatpoint.com/mean-stack-tutorial
- 2. https://www.tutorialspoint.com/meanjs/index.htm

Course Outcomes								
CO No.	CO-Statements	Cognitive						
	On successful completion of this course, students will be able to	Levels (K - Level)						
CO1	recall the basic concepts of Java script	K1						
CO2	interpret the uses of MongoDB	K2						
CO3	apply the different express.js concepts	K3						
CO4	analyse the usages of node.js	K4						
CO5	determine the angular.js	K5						
CO6	discuss the technologies to be used to create web application	K6						

Relationship Matrix											
Semester	Cour	Course Code Title of the Course									Credits
2	23PI)S2SP01	-	S	elf-pace	d Learni	ng: MEA	N Stack		-	2
Course	Programme Outcomes (POs) Programme Specific Outcomes ((PSOs)	Mean Scores of	
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	2	3	2	3	3	3	3	3	2	3	2.7
CO2	2	3	2	2	3	2	3	2	2	2	2.3
CO3	3	3	2	2	2	2	2	2	2	2	2.2
CO4	2	2	2	3	2	3	2	2	2	3	2.3
CO5	3	3	2	2	1	1	2	3	2	3	2.2
CO6	3	3	2	2	2	2	2	2	2	2	2.2
	Mean Overall Score										

Semester	Course Code	Title of the Course	Hours/Week	Credits
n	22005255024	Elective - 3:	5	4
2	23PD52E503A	Software Engineering for Data Science	5	4

Course Objectives
To describe the Software Engineering Principles
To apply Software Life Cycle Models for Software Development
To use Requirements Engineering skills and gather Requirements
To develop a quality Software
To apply appropriate testing methodologies

UNIT I: Software and Software Engineering

The nature of software - Software Engineering - The Software Process - Software Engineering Practice - Software Myths. **Process Models:** A Generic Process Model - Process Assessment and Improvement - Prescriptive Process Models - Product and Process. **Agile Development:** Introduction - Agility and Cost of Change - Agile Process - Scrum - Other Agile Frameworks.

UNIT II: Recommended Process Mode

Requirements Definition - Preliminary Architectural Design - Resource Estimation - First Prototype Construction - Prototype Evaluation - Prototype Evolution - Prototype Release - Maintain Release Software. **Human Aspects of Software Engineering:** Characteristics of a Software Engineer - The Psychology of Software Engineer - The Software Team - Team Structures - The impact of social media-Global Teams. **Principles that guide practice:** Core Principles - Principles that guide each Framework Activity - Communication Principles - Planning Principles - Modeling Principles - Construction Principles - Deployment Principles

UNIT III: Understanding Requirements

Requirements Engineering - Establishing the groundwork - Requirements Gathering - Developing Use Cases -Building the Analysis Model - Negotiating Requirements - Requirements Monitoring -Validating Requirements. Requirements Modeling - A Recommended Approach: Requirements Analysis - Scenario-Based Modeling - Class-Based Modeling - Functional Modeling - Behavioural Modeling.

UNIT IV: Design Concepts

Design within the context of Software Engineering - The Design Process - Design Concepts - The Design Model. **Quality and Security:** Introduction - Software Quality - The Software Quality Dilemma -Achieving Software Quality. **Software Quality Assurance:** Background Issues - Elements of Software Quality Assurance - SQA Process and Product Characteristics - SQA Tasks, Goals and Metrics - Formal Approaches - Statistical SQA - Software Reliability - ISO 9000 Quality standards - SQA Plan

UNIT V: Software Testing

Component Level: A Strategic Approach to Software Testing - Planning and Record Keeping - Test

Case Design - White-box Testing - Black-Box Testing - Object-oriented Testing. Software Testing - **Integration Level:** Software Testing Fundamentals - Integration Testing - Artificial Intelligence and Regression Testing - Integration Testing in the OO context - Validation Testing - Testing Patterns

Teaching	Lecture-based instruction, Technology-based Learning, Group Learning,
Methodology	Individual Learning, Inquiry-based Learning

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

Book for Study

1. Pressman, Roger, S., & Maxim, B.R. (2020). *Software Engineering: A Practitioner's Approach* (9th Ed.). McGraw-Hill.

Books for Reference

- 1. Martin, Robert, C. (2002). Agile Software Development: Principles, Patterns, and Practices, Prentice Hall.
- 2. Schach, Stephen, R. (2008). Object-oriented Software Engineering, McGraw-Hill.
- 3. Sommerville, Ian. (2011). Software Engineering (9th Ed.). Pearson.

Websites and eLearning Source

1. https://www.d.umn.edu/~gshute/softeng/principles.html

Course Outcomes								
CO No.	CO-Statements	Cognitive						
	On successful completion of this course, students will be able to	Levels (K - Level)						
CO1	recall the fundamental concepts of Software Engineering	K1						
CO2	compare and contrast the different software engineering methodologies	K2						
CO3	apply software engineering principles and practices to develop adata science application	К3						
CO4	analyze a software system and identify its design components	K4						
CO5	evaluate the quality of data science applications using appropriatemetrics	K5						
CO6	develop software models of real-world problems	K6						

Relationship Matrix											
Semester	Course Code Title of the Course								Hours	Credits	
2	23PD	S2ES03	A I	Elective	- 3: Sof	ftware Eng	gineering	for Data S	cience	5	4
Course	Pro	gramm	e Outco	mes (PC	Ds)	Prog	ramme S	pecific O	utcomes(I	PSOs)	Mean
Outcomes	DO1	DOA	DOJ	DO4	DO5	DCO1	DCO1	DCO2	DCO4	DCO5	Scores of
Outcomes	POI	PO2	POS	P04	P05	PS01	PS02	PS03	PS04	P505	COs
CO1	3	3	3	2	1	3	2	3	2	3	2.5
CO2	2	3	3	2	2	2	3	2	1	3	2.3
CO3	3	2	3	2	2	3	2	2	2	2	2.3
CO4	3	3	2	2	2	3	3	3	2	3	2.6
CO5	2	3	3	2	1	3	3	2	2	3	2.4
CO6	2	3	3	2	1	3	3	2	2	3	2.4
Mean Overall Score											2.4 (High)

Semester	Course Code	Title of the Course	Hours/Week	Credits
2	23PDS2ES03B	Elective - 3: Distributed Systems	5	4

UNIT I: Introduction to Distributed Systems

Introduction to Distributed Systems - Design Goals - Types of Distributed Systems

UNIT II: Architectures

Architectures - Architectural Styles - Middleware Organization - System Architecture - Example Architectures

UNIT III: Processes

Threads - Virtualisation - Clients - Servers - Code Migration

UNIT IV: Communications

(15 Hours) Foundations - Remote Procedure Call -Basic RPC operation, Parameter Passing, RPC based Application Support - Message Oriented Communication - Simple Transient Messaging with Sockets, Advanced Transient Messaging, Message Oriented Persistent Communication - Multicast Communication. Naming: Names, Identifiers and Addresses - Flat naming - Structured naming -Attribute-based naming

UNIT V: Co-ordination

Synchronisation - Logical Clocks - Mutual Exclusion - Election Algorithms - Distributed Event Management. Consistency and Replication: Introduction - Data-centric Consistency Models - Client-Centric Consistency Models - Replica Management. Fault Tolerance: Introduction

Taaahing Mathadalagu	Lecture-based Instruction, Technology-based Learning, Group					
Teaching Methodology	Learning,	Individual Learning, Inquiry-based Learning				

Book for Study

1. Andrew, S. T. & Steen, M.V. (2017). Distributed Systems: Principles and Paradigms, (3rd Ed.). Pearson.

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours) Clock

Books for Reference

- 1. Coulouris, G., Dollimore, J., Kindberg, T & Blair, G. (2011). *Distributed Systems: Concepts and Design*. (5th Ed.). Addison Wesley.
- 2. Smith, E.J & Nair, R. (2005). Virtual Machines: Versatile Platforms for Systems and Processes, (1st Ed.). Morgan Kaufmann.

Website and eLearning Sources

- 1. https://www.tutorialspoint.com/Distributed-Systems.
- 2. https://link.springer.com/article/10.1007/s00607-016-0508-7

Course Outcomes								
	CO-Statements	Cognitive						
CO No.	On successful completion of this course, students will be able to	Levels (K - Level)						
CO1	recall and describe fundamental concepts of distributed systems	K1						
CO2	illustrate the principles of concurrency and synchronization in distributed computing, including race conditions	К2						
CO3	evaluate and select appropriate communication protocols and middleware for specific distributed system scenarios	К3						
CO4	analyze and diagnose common issues and challenges in distributed systems	K4						
CO5	critique and assess the design choices of real-world distributed systems	K5						
CO6	evaluate the trade-offs between consistency, availability, and partition tolerance (CAP theorem)	K6						

Relationship Matrix											
Semester	Course Code Title of the Course										Credits
2	23P	DS2ES0	3B		Electi	ve - 3: Dist	ributed Sy	stems		5	4
Course	Р	rogrami	ne Outc	omes (P	Os)	Prog	ramme Sp	pecific Ou	tcomes (P	SOs)	Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Scores of COs
CO1	3	3	3	2	1	3	2	3	2	3	2.5
CO2	2	3	3	2	2	2	3	2	1	3	2.3
CO3	3	2	3	2	2	3	2	2	2	2	2.3
CO4	3	3	2	2	2	3	3	3	2	3	2.6
CO5	2	3	3	2	1	3	3	2	2	3	2.4
CO6	2	3	3	2	1	3	3	2	2	3	2.4
								Ν	Aean Ove	rall Score	2.4 (High)

Semester	Course Code	Title of the Course	Hours/Week	Credits
2	23PSS2SE01	Skill Enhancement Course: Soft Skills	4	3

Course Objectives
To provide a focused training on soft skills for students in colleges for better job prospects
To communicate effectively and professionally
To help the students take active part in group dynamics
To familiarize students with numeracy skills for quick problem solving
To make the students appraise themselves and assess others

Unit I: Effective Communication & Professional Communication

Definition of communication, Barriers of Communication, Non-verbal Communication; Effective Communication - Conversation Techniques, Good manners and Etiquettes; Speech Preparations & Presentations; Professional Communication.

Unit II: Resume Writing & Interview Skills

Resume Writing: What is a résumé? Types of résumés, - Chronological, Functional and Mixed Resume, Purpose and Structure of a Resume, Model Resume.

Interview Skills: Types of Interviews, Preparation for an interview, Attire, Body Language, Common interview questions, Mock interviews & Practicum

Unit III: Group Discussion & Personal effectiveness

Basics of Group Discussion, Parameters of GD, Topics for Practice, Mock GD & Practicum & Team Building.

Personal Effectiveness: Self Discovery; Goal Setting with questionnaires & Exercises

Unit IV: Numerical Ability

Introducing concepts Average, Percentage; Profit and Loss, Simple Interest, Compound Interest; Time and Work, Pipes and Cisterns.

Unit V: Test of Reasoning

Introducing Verbal Reasoning: Series Completion, Analogy; Data Sufficiency, Assertion and Reasoning; and Logical Deduction. Non-Verbal Reasoning: Series; and Classification

Teaching Methodology (Chalk and talk, Lectures, Demonstrations, PPT.
------------------------	--

Book for study

1. Melchias G., Balaiah, J. & Joy, J. L. (Eds). (2018). Winner in the Making: A Primer on soft Skills. Trichy, India: St. Joseph's College.

Books for References

- 1. Aggarwal, R. S. (2010). A Modern Approach to Verbal and Non-Verbal Reasoning. S. Chand.
- 2. Covey, S. (2004). 7 Habits of Highly effective people. Free Press.
- 3. Gerard, E. (1994). The Skilled Helper (5th Ed.). Brooks/Cole.
- 4. Khera, S. (2003). You Can Win. Macmillan Books.
- 5. Murphy, R. (1998). Essential English Grammar, (2nd Ed.). Cambridge University Press.
- 6. Sankaran, K., & Kumar, M. (2010). *Group Discussion and Public Speaking* (5th Ed.). M.I. Publications.
- 7. Trishna, K. S. (2012). How to do well in GDs & Interviews? (3rd Ed.). Pearson Education.
- 8. Yate, M. (2005). Hiring the Best: A Manager's Guide to Effective Interviewing and Recruiting

(12 Hours)

(**12 Hours**) st: Time and

(12 Hours)

(12 Hours)

(12 Hours)

Course Outcomes					
	Cognitive				
CO No.	On successful completion of this course, students will be able to	(K - Level)			
CO1	recall various soft skill sets	K1			
CO2	understand personal effectiveness in any managerial positions	К2			
CO3	apply verbal and non-verbal reasoning skills to solve problems	К3			
CO4	differentiate problems at work and home; and design solutions to maintain work-life balance	K4			
CO5	assess growth and sustainability and infuse creativity in employment that increases professional productivity	К5			
CO6	construct plans and strategies to work for better human society	K6			

Relationship Matrix											
Semester	Course Code				Title of the Course					ours	Credits
2	23PSS2SE01				Skill Enhancement Course: Soft Skills					4	3
Course	P	rogramn	ne Outco	mes (PC)s)	Progr	amme Spe	ecific Outo	omes (P	SOs)	Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Scores of COs
CO1	3	3	3	3	2	3	2	3	2	3	2.7
CO2	3	3	3	2	3	3	3	3	3	3	2.9
CO3	3	2	2	3	3	3	3	3	3	3	2.8
CO4	3	3	2	2	3	3	3	3	3	3	2.8
CO5	3	3	3	2	2	3	3	3	3	3	2.8
CO6	3	3	3	2	2	3	3	3	3	3	2.8
Mean Overall Score									2.8 (High)		

Semester	Course Code	Title of the Course	Hours/Week	Credits
3	23PDS3CC06	Core Course - 6: Machine Learning	5	5

Course	Objectives
--------	------------

To learn what machine learning is and how to build a simple machine learning model using Python
To choose the right machine learning classifier for a problem and train it using scikit-learn
To improve machine learning model performance using dimensionality reduction techniques
To combine different machine learning models using ensemble learning techniques
To use unsupervised machine learning to group unlabeled data and find patterns in it

UNIT I: Data Analytics and Machine Learning

Data Analytics with Pandas and Numpy: NumPy and basic stats - Matrices - pandas library - Working with data - Null Values - Creating statistical graphs. Giving Computers the ability to learn from data - Introduction - Building intelligent systems totransform data into knowledge - The three different types of Machine Learning (ML) - Basic terminologies and notations - A roadmap for building ML systems - Using Python for ML Training Simple ML Algorithms for Classification - Early History of ML - Implementing aPerceptron learning algorithm - Adaptive linear neurons and the convergence of learning

UNIT II: Classification Algorithms and Data Preprocessing

ML Classifiers using Scikit-Learn: Choosing a classification algorithm - Training a perceptron -Modeling class probabilities via logistic regression - Maximum margin classification with support vector machines (SVM) - Solving nonlinear problems using a kernel SVM - Decision tree learning - K-nearest neighbours: a lazy learning algorithm. Data Preprocessing: Missing data - Categorical data -Partitioning a dataset into separate training and test datasets - Bringing features onto the same scale -Selecting meaningful features - Assessingfeature importance with random forests

UNIT III: Dimensionality Reduction and Model Evaluation

Compressing Data via Dimensionality Reduction: Unsupervised dimensionality reduction via principal component analysis - Supervised data compression via linear discriminant analysis -Using kernel principal component analysis for nonlinear mappings. Best Practices for Model Evaluation and Hyperparameter Tuning - Streamlining workflows with pipelines - Using k-fold cross-validation to assess model performance - Debugging algorithms with learning and validation curves - Fine-tuning ML models via grid search - Looking at different performance evaluation metrics

UNIT IV: Ensembles and Regression Analysis

Combining Different Models for Ensemble Learning: Learning with ensembles - Combining classifiers via majority vote. **Bagging:** building an ensemble of classifiers from bootstrap samples -Leveraging weak learners via adaptive boosting. Predicting Continuous Target Variables with **Regression** Analysis: Linear regression - Implementing an ordinary least squares linear regression model - Fitting a robust regression model using RANSAC - Evaluating the performance of linear regression models - Using regularised methods for regression - Turning a linear regression model into a curve -polynomial regression - Dealing with nonlinear relationships using random forests

UNIT V: Clustering and Embedding ML Models

(15 Hours) Working with Unlabelled Data: Grouping objects by similarity using k-means - Organizingclusters as a hierarchical tree - Locating regions of high density via DBSCAN. Introduction to Embedding a ML model into a Web Application - Serializing fitted scikit-learn estimators - Setting up an SQLite database for data storage - Developing a web application with Flask - Turning any classifier into a web application - Deploying the web application to a public server.

TeachingMethodology	`eaching Iethodology	Lecture-based Learning, Project-based learning.
---------------------	-------------------------	---

Books for Study

1. Corey Wade et. al., Vahid Mirjalili. (2022). The Python Workshop. (2nd ed.). Packs publishing.

M Sc Data Science

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

Hours/Wook Crodits

2. Raschka, S., & Mirjalili, V. (2019). Python Machine Learning. (3rd ed.). Packtpublishing.

Books for Reference

- 1. Mueller, A.C., & Guido, S. (2016). Introduction to Machine Learning with Python. O'Reilly Media.
- 2. Alpaydin, E. (2010). Introduction to Machine Learning. (2nd ed.). MIT Press.
- 3. McKinney, W. (2018). Python for Data Analysis. (2nd ed.). O'Reilly Media.

Websites and eLearning Source

- 1. https://data-flair.training/blogs/machine-learning-tutorial/
- 2. https://www.geeksforgeeks.org/machine-learning/

Course Outcomes						
	CO-Statements	Cognitive				
CO No.	On successful completion of this course, students will be able to	Levels (K - Level)				
CO1	recall the concept of ensemble learning	K1				
CO2	explain the steps involved in building a machine learning system	K2				
CO3	develop k-means clustering algorithm in Python to cluster adataset	K3				
CO4	analyze the convergence properties of the perceptron learningalgorithm	K4				
CO5	evaluate the performance of ensemble learning algorithms on classification tasks	K5				
CO6	solve nonlinear classification problems using a kernel SVM	K6				

Relationship Matrix											
Semester	Course Code Title of the Course							Hours	Credits		
3	23PDS3CC06 Core Co					ourse - 6: Machine Learning				5	5
Course	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)								Mean		
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Scores of COs
CO1	3	3	3	2	1	3	3	3	2	1	2.4
CO2	2	3	2	2	2	2	2	3	2	2	2.2
CO3	2	3	2	3	2	3	2	3	2	2	2.4
CO4	3	2	2	2	2	3	2	2	2	2	2.2
CO5	2	2	3	3	2	2	1	3	3	1	2.2
CO6	3	2	3	2	2	1	2	3	3	1	2.2
Overall Mean Score									2.3 (High)		

Semester	Course Code	Title of the Course	Hours/Week	Credits
3	23PDS3CC07	Core Course - 7:	4	4
		Artificial Intelligence and Data Science		

Course Objectives
To develop knowledge to understand the fundamental concepts of AI
To enhance the skills of working with knowledge representation
To enable the use of learning algorithm
To enrich a proper understanding of AI methodologies
To deploy an algorithm implementation for generative AI

UNIT I: Artificial Intelligence

Artificial Intelligence: The AI Problems - The Underlying Assumptions -AI Techniques - The Level of the Model - Criteria for Success. **Problems, Problem Spaces & Search:** Defining the problem as a State Space Search - Production systems - Problem Characteristics - Production Systems Characteristics - Issues in the Design of Search Programs. **Heuristic Search Techniques:** Generate and Test - Hill Climbing - Best First Search - Problem Reduction - Constraint Satisfaction - Means ends Analysis.

UNIT II: Knowledge Representation

Knowledge Representation Issues: Representations and Mappings - Approaches to KR - Issues in KR - The Frame Problem. **Using Predicate Logic:** Representing Simple Facts in Logic - Representing Instances and ISA Relationships - Computable Functions and Predicates - Resolutions - Natural Deductions. **Representing Knowledge using Rules:** Procedural versus Declarative Knowledge - Logic Programming - Forward Versus Backward Reasoning - Matching - Control Knowledge. **Statistical Reasoning:** Probability and Bayes Theorem - Certainty Factors and Rule based Systems - Bayesian Networks - Dempsters Shafer Theory - Fuzzy Logic.

UNIT III: Learning

Learning: Meaning of Learning - Rote Learning - Learning by Taking Advice - Learning by Problem Solving - Learning from Examples: Induction - Explanation based Learning - Discovery - Analogy -Formal Learning Theory - Neural Net Learning and Genetic Learning. **Parallel and Distributed AI:** Psychological Modeling - Parallelism in Reasoning Systems - Distributed Reasoning Systems.

UNIT IV: AI Methodologies

Deep Learning Frameworks and AI Methodologies: Working - Framework - programmingLanguages - applications - optimization - fuzzy inference systems - artificial creativity - additional AI methodologies - glimpse into the future. **Building DL network using MXNet, TensorFlow and Keras:** Core components - MXNet, TensorFlow and Keras in action - Summary and Visualization.

UNIT V: Algorithm Implementation

Building and optimizer based on PSO and GA: Algorithm - implementation - variants - PSO and GA in action - Framework and tips. **Building an Advanced DL system:** CNN - RNN. **Alternative AI frameworks in DS:** ELMs - CapsNets - Fuzzy logic and Fuzzy inference systems.

Teaching Methodology	Videos, PPT, Blackboard, Demonstration, Exercises

Book for Study

1. Kevin Night. (2008). Artificial Intelligence (SIE). McGraw Hill.

Books for Reference

- 1. Russell. (2016). Artificial intelligence: a modern approach. Pearson Education Limited.
- 2. Bratko, I. (2011). *Prolog Programming for Artificial Intelligence* (4th ed.). Addison-Wesley Educational Publishers.

Websites and eLearning Sources

- 1. http://www.aispace.org/index.html
- 2. https://www.britannica.com/technology/artificial-intelligence

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

3. https://www.sas.com/en_in/insights/analytics/what-is-artificial-intelligence.html

Course Outcomes					
	CO-Statements	Cognitive			
CO No.	On successful completion of this course, students will be able to	Levels (K - Level)			
CO1	recall the basic concepts of Artificial Intelligence	K1			
CO2	interpret the uses of search techniques	K2			
CO3	apply the different knowledge representation techniques	K3			
CO4	analyse the various learning methods	K4			
CO5	determine the AI methodologies	K5			
CO6	discuss the implementation of algorithm	K6			

Relationship Matrix											
Semester	Course	e Code			Titl	le of the C	Course			Hours	Credits
3	23PDS	3CC07	Core	Course -	- 7: Arti	ficial Intel	lligence an	d Data Sci	ence	4	4
Course	Pr	ogramm	e Outco	mes (PO	s)	Pro	gramme S	Specific O	utcome (PSOs)	Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Scores
Outcomes	101	102	105	104	105	1501	1502	1505	1504	1505	of COs
CO1	3	2	3	2	3	3	3	2	2	2	2.5
CO2	3	2	2	2	2	3	3	3	3	3	2.6
CO3	2	3	3	3	2	2	2	2	2	2	2.3
CO4	3	2	2	3	3	2	2	3	3	2	2.5
CO5	3	3	2	2	2	3	3	3	2	3	2.6
CO6	2	3	3	3	2	2	3	2	2	2	2.4
									Overall N	Mean Score	2.4 (High)

Semester	Course Code	Title of the Course	Hours/Week	Credits
3	23PDS3CC08	Core Course - 8: Core Industry Module: Business Analytics	4	4

To develop a comprehensive understanding of the business analytics process and its applications in decision-making

To cultivate effective critical thinking and questioning skills essential for data science inquiries and statistical inference

To explore advanced analytics through real-world case studies

To apply analytical techniques to solve practical business problems

To analyse and interpret data in various business domains through in-depth case studies

UNIT I: Business Analytics

Introduction to Business Analytics - Business Analytics Process - Identifying Data - Types and Stages of Data Analytics with an Example for Each Business Intelligence and Data Engineering - Exploratory Data Analytics - Communicating Business Analytics Results

UNIT II: Asking Data Science Questions

Asking Data Science Questions - Good Question - Critical Thinking - Reasoning - Weak Sense Critical Thinking and Strong Sense Critical Thinking - Question Meetings - Question Types - Key areas of Questioning - Challenging Evidence - Statistical Inference.

UNIT III: Advanced Analytics: Exploring Strategies and Applications (12 Hours)

Introduction to advanced analytics - Workflow - Case Studies - Prescriptive Analytics: Introduction - Prescriptive Analytics Workflow - Case Studies - Experimental Analytics: Introduction - Workflow and Case Studies

UNIT IV: Applied Analytics: Exploring What-If Analysis, Optimization, (12 Hours) and Business Scenarios

Case Studies - Examples and Problems on What if Analysis - Goal Seek - Solvers for Optimization - Linear and non-linear mixture problems - Importance of Creating and Evaluating Business Scenarios.

UNIT V: Applied Business Analytics

Case Studies on Customer Analytics - Marketing Performance Measurement and Management -Employee Performance Analytics - Operation Analytics - Accounting Analytics.

Topphing Mathadology	Lectures and Presentations, Interactive Discussions, Case Studies,
reaching Methodology	Collaborative Learning

Books for Study

- 1. Pochiraju, B., & Seshadri. S. (2019). Essentials of Business Analytics. (1st ed.). Springer.
- 2. Bag, D. (2016). Business Analytics. (1st ed.). Routledge.
- 3. Marc, J.S. Schniederjans., Schniederjans, D.G., & Starkey, C.M. (2022). *Business Analytics Principles, Concepts, and Applications: What, Why, and How.* (1st ed.). Pearson Education.
- 4. Stephenson, D. (2018). *Big Data Demystified: How to use big data, data science and AI to make better business decisions and gain competitive advantage.* (1st ed.). FT Publishing International.

Books for Reference

- 1. Marr, B. (2017). *Data Strategy: How to Profit from a World of Big Data, Analytics and the Internet of Things*. Kogan Page Publishers
- 2. Hardoon, Roi, D., Shmueli, G. (2015). *Getting started with business analytics: insightful decision-making.* CRC Press.

Websites and eLearning Sources

- 1. https://www.tutorialspoint.com/business_analysis/index.htm
- 2. https://www.simplilearn.com/tutorials/business-analysis-tutorial
- 3. https://online.hbs.edu/blog/post/prescriptive-analytics

(12 Hours)

(12 Hours)

(12 Hours)

Course Outcomes					
	CO-Statements	Cognitive			
CO No.	On successful completion of this course, students will be able to	Levels (K - Level)			
CO1	recall the fundamental components and stages of the business Analytics process and their applications	K1			
CO2	explain the critical thinking skills necessary for effective data Science questioning and apply them to analyse and critique Evidence	K2			
CO3	make use of advanced analytics strategies to address real-world Business challenges	K3			
CO4	examine various analytical techniques to formulate data-driven Solutions for complex business scenarios.	K4			
CO5	assess case studies to make informed judgments and recommendations	K5			
CO6	construct comprehensive business analytics plans and solutions	K6			

Relationship Matrix											
Semester	Cours	se Code			Titl	e of the C	ourse			Hours	Credits
3	23PD	S3CC08	Core	Course -	8: Core 1	Industry M	odule: Bu	isiness Ar	nalytics	4	4
Course	Р	rogramn	ne Outco	omes (PC	s)	Prog	ramme S	pecific O	utcomes	(PSOs)	Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Scores of COs
CO1	3	3	3	2	1	3	3	3	2	1	2.4
CO2	2	2	3	2	2	2	2	3	2	2	2.2
CO3	3	2	3	2	2	3	2	3	2	2	2.4
CO4	3	2	2	2	2	3	2	2	2	2	2.2
CO5	2	3	3	2	1	2	3	3	2	1	2.2
CO6	2	3	3	2	1	2	3	3	2	1	2.2
									Overall 1	Mean Score	2.3 (High)

Semester	Course Code	Title of the Course	Hours/Week	Credits
3	23PDS3CC09	Core Course - 9: Research Methodology	5	4

Course Objectives
To develop a fundamental understanding of research methodologies and their applications in academic
and professional contexts

To equip students with the skills necessary to plan, execute, and evaluate a research project, adhering to ethical and quality standards

To enhance critical reading and analytical capabilities

To enable students to design and conduct experiments, interpret statistical results, and draw valid conclusions from data analysis

To cultivate proficiency in presenting research findings through effective writing and visual representation

UNIT I: Introduction to Research

Meaning, Objectives and Characteristics of research - Research Methods Vs. Methodology - Types of research-Research process - Criteria of good research - Research Project: Shaping a Research Project - Research Planning - Students and Advisors - Checklist.

Unit II: Literature Review

Reading and Reviewing - Hypotheses, Questions, and Evidence.

Unit III: Experiments for Computing

Experimentation-Statistical Principles-Writing a Paper: Organization - Good Style - Style Specifics -Punctuation - Mathematics - Algorithms - Graphs, Figures, and Tables - Other Professional Writing.

Unit IV: Presentation

Editing - Presentations - Slides - Posters - Ethics.

Unit V: Report writing

Report writing using LATEX for a research problem.

Taaahing Mathadalagu	Lectures and Discussions, Case Studies and Real-life Examples, Group
reaching Methodology	Projects and Collaborative Learning

Books for Study:

- 1. Kothari C. R. (2004). Research Methodology Methods and Techniques. (2nd ed.). New Age International Publishers.
- 2. Zobel, J. (2014). Writing for Computer Science. (3rd ed.). Springer-Verlag.

Books for Reference:

- 1. Kumar, R. (2011). Research Methodology -a step-by-step guide for beginners. (3rd ed.). SAGE Publications India Pvt Ltd.
- 2. Panneerselvam, R. (2014). Research Methodology. (2nd ed.). New Delhi: Prentice Hall.

(15 Hanna)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

Course Outcomes						
	CO-Statements	Cognitive				
CO No.	On successful completion of this course, students will be able to	Levels (K - Level)				
CO1	recall the fundamental principles and characteristics of research methodologies	K1				
CO2	interpret the process of shaping a research project and demonstrate comprehension of various types of research	К2				
CO3	apply critical reading and analytical skills to conduct effective literature reviews and evidence synthesis for research	К3				
CO4	analyze the statistical principles and experimental data, integrating them to draw valid conclusions and insights	К4				
C05	evaluate and assess research papers, projects, and presentations for their structure, style, and content quality	К5				
CO6	create well-structured research reports using LATEX, integrating research methodologies and adhering to ethical guidelines	K6				

	Relationship Matrix										
Semester	Cours	se Code			Titl	e of the C	ourse			Hours	Credits
3	23PD5	S3CC09		Core	Course ·	9: Resear	ch Metho	dology		5	4
Course	P	rogramn	ne Outco	omes (PC)s)	Prog	ramme S	pecific O	utcomes	(PSOs)	Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO/	PSO5	Scores
Outcomes	101	102	105	104	105	1501	1502	1505	1504	1505	of COs
CO1	3	3	2	2	2	3	3	2	2	2	2.4
CO2	3	3	2	2	2	3	3	2	2	2	2.4
CO3	3	3	2	2	2	3	3	3	2	2	2.5
CO4	3	3	2	2	2	3	3	3	2	2	2.5
CO5	3	3	2	2	2	3	2	2	2	2	2.3
CO6	3	3	2	2	2	3	2	2	2	2	2.3
									Overall N	Iean Score	2.4 (High)

Semester	Course Code	Title of the Course	Hours/Week	Credits
3	23PDS3CP03	Core Practical - 3: Machine Learning	4	3

To acquire skills in data manipulation and analysis using NumPy and Pandas

To gain proficiency in data visualization through graph creation and interpretation

To explore dimensionality reduction techniques, encompassing both supervised and unsupervised methods

To develop the ability to construct and apply classification models, including SVMs, kernel SVMs, logistic regression, and decision trees

To utilize unsupervised learning for data clustering, employing methods such as k-means and DBSCAN

List of Exercises

- 1. Programs using NumPy and Pandas
- 2. Visualizing using graphs
- 3. Supervised data compression via linear discriminant analysis
- 4. Unsupervised dimensionality reduction via principal component analysis
- 5. Classification with support vector machines (SVM)
- 6. Modeling class probabilities via logistic regression.
- 7. Solving Classification problem using Decision tree
- 8. Supervised data compression via linear discriminant analysis
- 9. Grouping objects by similarity using k-means
- 10. Organizing clusters as a hierarchical tree

Course Outcomes					
	CO-Statements	Cognitive			
CO No.	On successful completion of this course, students will be able to	Levels (K - Level)			
CO1	define and explain the different types of machine learning models	K1			
CO2	identify machine learning algorithms employed in addressing diverse problems, including classification regression and clustering	K2			
CO3	explain appropriate metrics to evaluate machine learning modelperformance	K3			
CO4	analyze the outcomes of machine learning projects to identifypatterns and trends	K4			
CO5	evaluate and troubleshoot issues in machine learning models to improve their performance	К5			
CO6	design and implement machine learning models that can be deployed across various environments	K6			

Relationship Matrix											
Semester	Cour	se Code			Ti	tle of the	Course			Hours	Credits
3	23PD	S3CP03		Cor	e Pract	ical - 3: N	Machine L	earning		4	3
Course	Pro	ogramm	e Outco	mes (PC)s)	Prog	ramme S	pecific O	utcomes	(PSOs)	Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Scores of
Outcomes	101	102	105	104	105	1301	1502	1505	1504	1505	COs
CO1	2	2	2	3	3	2	2	2	1	3	2.2
CO2	2	3	2	2	2	2	2	3	2	2	2.2
CO3	3	3	3	2	2	3	3	2	3	2	2.6
CO4	2	3	3	2	2	3	2	2	3	2	2.4
CO5	3	3	2	2	3	2	2	3	1	2	2.3
CO6	3	2	2	1	2	3	3	2	3	3	2.4
Overall Mean Score									2.4 (High)		

Semester	Course Code	Title of the Course	Hours/Week	Credits
3	23PDS3CP04	Core Practical - 4: Artificial Intelligence	4	3

To develop knowledge and understand the fundamental concepts of AI
To enhance the uses of searching algorithms
To enable the learning through gaming
To enrich a proper understanding of the various problems related to AI

To deploy problem solving skills through AI

List of Exercises

- 1 Program to Implement Breadth First Search using Python.
- 2. Program to Implement Depth First Search using Python.
- 3. Program to Implement Tic-Tac-Toe game using Python.
- 4. Program to Implement 8-Puzzle problem using Python.
- 5. Program to Implement Water-Jug problem using Python.
- 6. Program to Implement Travelling Salesman Problem using Python.
- 7. Program to Implement Tower of Hanoi using Python.
- 8 Program to Implement Monkey Banana Problem using Python.
- 9. Program to Implement Alpha-Beta Pruning using Python.
- 10. Program to Implement 8-Queens Problem using Python.

Teaching Methodology Hands-on Programming Exercises and Labs, Project Work

	Course Outcomes					
	CO-Statements	Cognitive				
CO No.	On successful completion of this course, students will be able to	Levels (K - Level)				
CO1	recall the basic concepts of Artificial Intelligence	K1				
CO2	interpret the various searching algorithms	K2				
CO3	apply the different problem-solving techniques	K3				
CO4	analyse the usages of gaming problem	K4				
CO5	determine the pruning problem	K5				
CO6	discuss the various types of AI problem solving techniques	K6				

Relationship Matrix											
Semester	Cour	rse Code			Ti	tle of the	Course			Hours	Credits
3	23PD	S3CP04	L I	Core	Practic	cal - 4: A	rtificialIn	telligence	;	4	3
Course	Pro	ogramm	e Outco	mes (PC	Ds)	Prog	gramme S	Specific C	Outcomes	(PSOs)	Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Scores of COs
CO1	2	3	2	3	3	3	3	3	2	3	2.7
CO2	2	3	2	2	3	2	3	2	2	2	2.3
CO3	3	3	2	2	2	2	2	2	2	2	2.2
CO4	2	2	2	3	2	3	2	2	2	3	2.3
CO5	3	3	2	2	1	1	2	3	2	3	2.2
CO6	3	3	2	2	2	2	2	2	2	2	2.2
Overall Mean Score								2.3 (High)			

Semester	Course Code	Title of the Course	Hours/Week	Credits
3	23PDS3IS01	Internship	-	2

Course Objectives
To develop critical thinking skills
To enhance creativity and innovation
To strengthen communication and teamwork skills
To cultivate ethical awareness and responsibility
To foster effective collaboration

	Internship					
SL	Area of Work	Maximum Marks				
1	First Review	25				
1	Plan of the Internship, Problem definition, Technology Adopted	23				
	Second Review					
2	Execution of the plan / Collection of data / Organization of Materials /	25				
	Fabrication Experimental study / Hypothesis, Testingetc., and Presentation					
3	Documentation	25				
4	Viva Voce Examination	25				
	TOTAL	100				

Course Outcomes					
	CO-Statements	Cognitive			
CO No.	On successful completion of this course, students will be able to	Levels (K - level)			
CO1	Apply theoretical knowledge gained in the classroom to practical, real-world situations.	K1			
CO2	Exhibit professional growth by adapting to diverse work	K2			
CO3	Enhance communication skills, including written, verbal, and interpersonal communication.	K3			
CO4	Develop problem-solving and critical thinking skills to addressreal-world challenges.	K4			
CO5	Build a professional network within the industry or field of interest.	K5			
CO6	Demonstrate ethical awareness and responsible work practices.	K6			

Relationship Matrix											
Semester	Cours	se Code			Tit	le of the	Course			Hours	Credits
3	23PD	S3IS01				Interns	hip			-	2
Course	Pre	ogramm	e Outco	mes (PC)s)	Prog	ramme S	pecific O	utcomes	(PSOs)	Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Scores
Outcomes	101	102	105	104	105	1501	1502	1505	1504	1505	Of COs
CO1	2	2	3	3	3	3	2	3	2	3	2.6
CO2	3	2	2	3	2	2	2	2	3	2	2.3
CO3	3	3	3	3	3	2	3	2	3	2	2.7
CO4	2	3	2	2	2	2	2	3	2	3	2.3
CO5	3	2	1	1	2	3	2	3	2	3	2.2
CO6	3	3	3	3	3	2	3	2	3	2	2.7
Overall Mean Score										2.4 (High)	

Semester	Course Code	Title of the Course	Hours/Week	Credits
4	23PDS4CC10	Core Course - 10: Cloud Computing	5	5

Course Objectives
To develop knowledge and understand the fundamental concepts cloud computing
To enhance the cloud virtualization
To enable the use of cloud in various fields
To enrich a proper understanding of cloud security and privacy
To deploy the various cloud technologies

UNIT I: Basics of Cloud Computing

Introduction to Cloud Computing: Introduction - History - Fundamentals of Cloud computing characteristics - Advantages and Disadvantages- Comparison of traditional and cloud computing paradigms- Evaluating the impact and economics - Business drivers- Future of cloud. Services and Deployment model: Cloud deployment models - Cloud service models - Cloud infrastructure mechanisms - Cloud service management

UNIT II: Cloud Architecture

Cloud Computing Architecture: Cloud computing architecture - Design principle - Life cycle (CCLC) -Reference architecture - Load balancing approach - Mobile cloud computing (MCC) - Casestudy of oracle cloud management. Virtualization: Understanding - Adoption - Techniques - Working of Virtualization - Kernel-based virtual machine (KVM) - VMware - VirtualBox - Citrix - Types of virtualizations - Virtualization in cloud

UNIT III: Cloud Applications

Service Oriented Architecture: Objectives - SOA foundation - Web services and SOA - SOA communication - SOA components - SOA Infrastructure - Need of SOA - Business Process Management (BPM) - Services of BPM. Cloud Computing Applications: Introduction - Google App Engine -Google Apps - Google Cloud Data store - Dropbox Cloud - Apple iCloud - Microsoft Windows Azure Cloud - Amazon Web Services (AWS)

UNIT IV: Cloud Security and Privacy

Cloud Security - Cloud CIA security model - Cloud computing security Architecture - Service provider security issues - Security issues in Virtualization - Data security in cloud - Data privacy risks - Business continuity and disaster recovery - Threats in cloud - Security techniques for threats. Cloud service level agreements (SLA): Components - Types - Cloud vendors - Quality of Cloud Services - Techniques -Migration - Trust management.

UNIT V: Cloud Technologies

Cloud Computing Technologies - High performance Computing - Message Passing Interface (MPI) -MapReduce programming model -Dryad and Dryad LINQ -Eucalyptus cloud platform: Components -Open Nebula: Layers - Features - OpenStack: components - Benefits - The Apache Hadoop ecosystem. Adoption of Cloud Computing: Factors affecting the adoption - Existing areas of application - Case studies -Certifications.

Teaching Methodology	Videos, PPT, Case Studies, Group Project.
----------------------	---

Book for Study

1. Hiran, K. (2019). Cloud Computing: Master the Concepts, Architecture and Applications with Real-world examples and Case studies. BPB Publishers.

Books for Reference

- 1. Motwani, B. (2020). Data Analytics using Python. Wiley.
- 2. Piper, B. (2019). AWS Certified Solutions Architect Study Guide: Associate SAA-CO1 Exam. Googel Book.
- 3. Rajan, L. (2019). Building Google Cloud Platform Solutions: Develop Scalable Applications from Scratch and Make Them Globally Available in Almost Any Language. Packt.

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

M Sc Data Science

4. Buyya, R. (2013). *Mastering Cloud Computing*. Tata McGraw Hill Education Pvt ltd

Websites and eLearning Sources

- 1. https://acloudguru.com
- 2. https://www.cloudcomputing-news.net/
- 3. https://cloudtweaks.com/

Course Outcomes						
	CO-Statements	Cognitive				
CO No.	On successful completion of this course, students will be able to	Levels (K - Level)				
CO1	recall the basic concepts of cloud	K1				
CO2	interpret the cloud architecture	K2				
CO3	apply the service-oriented architecture	K3				
CO4	analyze the various applications of cloud	K4				
CO5	determine the cloud security and privacy	K5				
CO6	discuss the various types of cloud technologies	K6				

Relationship Matrix											
Semester	Cour	rse Code	1			Title of	the Cours	se		Hou	rs Credits
4	23PD	S4CC10)		Core Co	ourse - 10	Cloud C	Computing	g	5	5
Course	Pro	ogramm	e Outco	utcomes (POs) Programme Specific Outcomes (PSO)					(PSO)	Mean Scores of	
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	2	3	2	3	3	3	3	3	2	3	2.7
CO2	2	3	2	2	3	2	3	2	2	2	2.3
CO3	3	3	2	2	3	2	2	3	2	2	2.3
CO4	2	2	2	3	2	3	2	2	2	3	2.3
CO5	3	3	2	2	1	1	2	3	2	3	2.1
CO6	3	3	2	2	2	2	2	2	2	2	2.1
Overall Mean Score											2.3 (High)

Semester	Course Code	Title of the Course	Hours/Week	Credits
4	23PDS4ES04A	Elective - 4: Deep Learning	5	4

To acquire fundamental knowledge about neural networks and how they compare to biological neurons

To achieve a clear understanding of shallow neural networks, including perceptrons and backpropagation networks

To explore the mechanics of convolutional neural networks (CNNs) and recognize their diverse applications

To delve into recurrent neural networks (RNNs) and their practical implementations across various domains

To explain how auto encoders can be used to solve machine learning problems

UNIT I: Introduction to Artificial Neural Networks

Neural Networks - Application Scope of Neural Networks - Fundamental Concept of ANN: The Artificial Neural Network - Biological Neural Network - Comparison between Biological Neuron and Artificial Neuron - Evolution of Neural Network. Basic models of ANN - Learning Methods - Activation Functions - Importance Terminologies of ANN.

UNIT II: Supervised Learning Network

Shallow neural networks - Perceptron Networks - Theory - Perceptron Learning Rule Architecture -Flowchart for training Process - Perceptron Training Algorithm for Single and Multiple Output Classes. Back Propagation Network - Theory - Architecture - Flowchart for training process - Training Algorithm - Learning Factors for Back - Propagation Network. Radial Basis Function Network RBFN: Theory, Architecture, Flowchart and Algorithm.

UNIT III: Convolutional Neural Network

Introduction - Components of CNN Architecture - Rectified Linear UNIT (ReLU) Layer - Exponential Linear UNIT (ELU, or SELU) - Unique Properties of CNN - Architectures of CNN - Applications of CNN.

UNIT IV: Recurrent Neural Network

Introduction - The Architecture of Recurrent Neural Network - The Challenges of Training Recurrent Networks - Echo-State Networks - Long Short - Term Memory (LSTM) - Applications of RNN

UNIT V: Auto Encoder and Restricted Boltzmann Machine

Introduction - Features of Auto encoder Types of Autoencoder Restricted Boltzmann Machine-Boltzmann Machine - RBM Architecture -Example - Types of RBM.

Teaching Methodology	Lecture-based Learning, Discovery Learning, Expeditionary learning

Books for Study

- 1. Sivanandam, S.N., & S Deepa, S.N. (2018). *Principles of Soft Computing*. (3rd ed.). Wiley Publication.
- 2. Rose, S.L., Kumar, A.L., & Renuka, D.K. (2019). *Deep Learning using Python*. (1st ed.). Wiley Publication.

Books for Reference

- 1. Aggarwal, C.C. (2018). Neural Networks and Deep Learning. Springer Publication.
- 2. Chollet, F. (2017). Deep Learning with Python. (1st ed.). Manning Publications.
- 3. Kelleher, J.D. (2019). Deep Learning. MIT Press.

Websites and eLearning Source

- 1. https://onlinecourses.nptel.ac.in/noc22_cs22/previe
- 2. whttps://arxiv.org/abs/1506.06579
- 3. https://arxiv.org/abs/1605.06211
- 4. https://cs230.stanford.edu/lecture/

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

Course Outcomes						
	CO-Statements	Cognitive				
CO No.	On successful completion of this course, students will be able to	Levels				
<u> </u>	recall the herr concerns of Neurol Networks	(K - Level)				
	recall the key concepts of Neural Networks	KI				
CO2	explain the Perceptron Learning Rule, Back Propagation	K2				
CO3	apply CNN architectures for specific image processing tasks	K3				
CO4	analyse Echo-State Networks and LSTM in sequence Modeling tasks	K4				
CO5	evaluate the effectiveness of Auto encoders and rbms in featureextraction	K5				
CO6	create flowcharts for the training processes of all the networks	K6				

Relationship Matrix											
Semester	Course Code					Title of t	he Cours	e		Hours	s Credits
4	23PD	S4ES04A	1		Elec	ctive - 4:	Deep Lea	rning		5	4
Course	Pr	Programme Outcomes (POs)					Programme Specific Outcomes (PS				Mean Second of
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	2	1	2	3	1	2	2	1	3	2
CO2	3	2	3	2	2	3	2	3	1	3	2.4
CO3	2	1	3	2	1	1	3	2	1	3	1.9
CO4	3	2	3	3	3	1	3	3	2	1	2.4
CO5	3	2	3	3	3	2	2	3	2	3	2.6
CO6	3	2	3	2	1	2	2	2	3	3	2.3
	Overall Mean Score										

Semester	Course Code	Title of the Course	Hours/Week	Credits
4	23PDS4ES04B	Elective - 4: Image Recognition	5	4

To learn how human vision works and how it relates to computer vision To use image processing techniques to solve real-world computer vision problems To apply geometric transformations to align and manipulate images To create and use algorithms to find and describe image features for object recognition To assess and compare different object recognition methods

UNIT I: Computer Vision and Image Fundamentals

Introduction: The Human Vision System - Practical Applications of Computer Vision - The Futureof Computer Vision. **Images:** The Simple Pinhole Camera Model - Images - Sampling- Quantization-Color Images- Noise - Smoothing

UNIT II: Histograms and Binary Vision Techniques

Histograms:1D Histograms - Histogram/Image Equalization- Histogram Comparison-k-means Clustering. **Binary Vision:** Thresholding- Threshold Detection Methods- Mathematical Morphology.

UNIT III: Geometric Transformation and Edge Detection

Geometric Transformation: Affine Transformations - Perspective Transformations - Interpolation. **Edges:** Edge Detection - Contour Segmentation - Hough Transform

UNIT IV: Feature Detection

Features: Moravec Corner Detection - Harris Corner Detection - FAST Corner Detection- SIFT - Recognition

UNIT V: Recognition Techniques and Computer Vision Problems

Recognition: Template Matching - Chamfer Matching - Statistical Pattern Recognition - Cascadeof Haar Classifiers - Other Recognition Techniques - Performance. **Vision Problems:** Abandoned and Removed Object Detection - Traffic Lights - Real Time Face Tracking - Road Sign Recognition - License Plates

Teaching MethodologyLecture-based Learning, Expeditionary Learning	
--	--

Books for Study

1. Dawson, K. (2014). A Practical Introduction to Computer Vision with OpenCV. John Wiley& Sons Ltd.

Books for Reference

- 1. Forsyt, A.D., Ponce, J. (2015). Computer Vision: A Modern Approach. PearsonPublication.
- 2. Solem, J.E. (2012). *Programming Computer Vision with Python: Tools and Algorithms for Analyzing* Images. O'Reilly Media Publication.
- 3. Szeliski, R. (2011). Computer Vision: Algorithms and Applications. Springer Publications.
- 4. Prince, S.J.D. (2012). Computer Vision: Models, Learning, and Inference. Cambridge
- University Press.

Websites and eLearning Source

- 1. https://www.cs.toronto.edu/~urtasun/courses/CV/lecture01.pdf
- 2. https://www.cl.cam.ac.uk/teaching/0809/CompVision/CompVisNotes.pdf

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

Course Outcomes								
	CO-Statements	Cognitive						
CO No.	On successful completion of this course, students will be able to	Levels (K - Level)						
CO1	recall the fundamental concepts of the Human Vision System and the basics of	K1						
CO2	Methods, and Mathematical Morphology	К2						
CO3	apply Affine and Perspective Transformations in imageprocessing tasks and implement edge detection techniques	К3						
CO4	analyze the strengths and weaknesses of different recognition Techniques	K4						
CO5	evaluate the performance of computer vision systems in real-world scenarios	K5						
CO6	create customized computer vision solutions by combining multiple recognition techniques to address vision problems	K6						

Relationship Matrix											
Semester	Cour	se Code		Title of the Course						Hours	Credits
4	23PD	S4ES041	3]	Elective	- 4: Imag	ge Recogn	ition		5	4
Course	Pro	ogramm	e Outco	mes (PC)s)	Prog	ramme S	pecific O	utcomes	(PSOs)	Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Scores of COs
CO1	2	3	2	3	3	2	2	3	2	3	2.5
CO2	3	2	3	2	2	2	2	2	3	2	2.3
CO3	3	2	2	2	2	3	3	2	3	2	2.4
CO4	3	2	2	2	2	3	2	2	3	2	2.3
CO5	3	2	3	2	3	2	2	2	3	2	2.4
CO6	2	1	2	1	2	3	3	1	2	3	2
Overall Mean Score											2.3 (High)

Semester	Course Code	Title of the Course	Hours	Credits
4	23PDS4PW01	Project Work & Viva Voce	20	17

To develop critical thinking skills through the analysis and evaluation of problems and solutions To enhance creativity and innovation by designing and developing new solutions

To strengthen communication and teamwork skills by effectively collaborating with others on projects

To cultivate ethical awareness and responsibility by considering the ethical implications of technologies

To collaborate with both teams and work independently to pursue a common goal

Project Work							
SL	Area of Work	Maximum Marks					
	PROJECT WORK:	40					
	(i) Plan of the Project						
1	(ii) Execution of the plan / Collection of data / Organization of Materials /						
1	Fabrication Experimental study / Hypothesis, Testingetc. and Presentation of	90					
	the report.						
	(iii) Individual Initiative	20					
2	Viva Voce Examination	50					
	TOTAL	200					

OTAL

Course Outcomes								
	CO-Statements	Cognitive						
CO No.	On successful completion of this course, students will be able to	Levels (K - level)						
CO1	Show leadership skills and learn time management	K1						
CO2	Identify various tools to be applied to a specific problem	K2						
CO3	Evaluate the reports	K3						
CO4	Take part in a team as well as manage it to deliver stunning outcomes	K4						
CO5	Apply the appropriate techniques, skills, and tools to solve a real-world problem.	K5						
CO6	Develop the individual skills to present and organize projects	K6						

Relationship Matrix											
Semester	Cour	rse Code				Title of the Course					s Credits
4	23PD	S4PW01	L		Pro	ject work	& Viva V	Voce		20	17
Course	Pr	ogramm	e Outco	Outcomes (POs)			Programme Specific Outcomes (P				Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score Of COs
CO1	3	2	3	2	3	2	3	2	3	2	2.5
CO2	2	2	1	3	3	1	2	3	3	2	2.2
CO3	1	3	1	3	3	3	3	2	3	3	2.5
CO4	3	2	3	3	3	3	3	2	3	2	2.7
CO5	2	2	3	3	2	1	1	3	2	3	2.2
CO6	3	1	3	3	2	3	2	2	1	3	2.3
Overall Mean Score											2.4 (High)

Semester	Course Code	Title of the Course	Hours	Credits
4	23PDS4CE01	Comprehensive Examination	-	2

Course Objectives
To develop students' understanding of the fundamental concepts of data science
To provide students with the skills and knowledge necessary to solve real-world data science
problems
To expose students to a variety of data science tools and platforms
To develop students' critical thinking and problem-solving skills

To prepare students for careers in data science

UNIT I: Statistical Analysis and Linear Algebra

Correlation: Scatter plot, Karl Pearson coefficient of correlation, Spearman's rank correlation coefficient, multiple and partial correlations (for 3 variates only). **Vectors and Matrices:** Vectors and Linear Combinations-Lengths and Angles from Dot Products- Matrices and Their Column Spaces. **Solving Linear Equations Ax = b:** Elimination and Back Substitution-Elimination Matrices and Inverse Matrices-Matrix Computations and A = LU-Permutations and Transposes. **The Four Fundamental Subspaces:** Vector Spaces and Subspaces-Computing the Nullspace by Elimination: A = CR-The Complete Solution to Ax = b-Independence, Basis, and Dimension- Dimensions of the Four Subspaces.

UNIT II: Data Science Fundamentals and Data Structures

Data Science - Data science Venn diagram - Basic terminology - Data science case studies- Types of data - Types of data analytics - Data warehousing - Design consideration of data warehouse - Data loading process - Data mining - Data mining techniques - Tools and platforms. **Basic concepts of Data Structure:** Problem Solving techniques - List ADT - Stacks ADT - Queue ADT - Preliminaries Binary Tree - Binary Search Trees - AVL Trees - B-Trees. Sorting: Preliminaries, Insertion Sort, Shell Sort, Heap Sort, Merge Sort, Quick Sort, External Sorting.

UNIT III: Machine Learning and Artificial Intelligence

Giving Computers the ability to learn from data - Introduction - Building intelligent systems to transform data into knowledge - The three different types of Machine Learning (ML) - Introduction to basic terminology and notations - A roadmap for building ML systems. **Data Preprocessing:** Missing data - Categorical data - Partitioning a dataset into separate training and test datasets - Bringing features onto the same scale - Selecting meaningful features - Assessing feature importance with random forests. **Artificial Intelligence:** The AI Problems - The Underlying Assumptions - AI Technique - The Level of the Model - Criteria for Success. **Problems, Problem Spaces & Search:** Defining the problem as a State Space Search - Production systems - Problem Characteristics - Production Systems Characteristics - Issues in the Design of Search Programs. **Heuristic Search Techniques:**Generate and Test - Hill Climbing - Best First Search - Problem Reduction - Constraint Satisfaction - Means ends Analysis.

UNIT IV: Software Testing and Applied Business Analytics

Software Testing: Component Level: A Strategic Approach to Software Testing - Planning and Recordkeeping - Test-Case Design - White-box Testing - Black-Box Testing - Object-oriented Testing. Software Testing - Integration Level: Software Testing Fundamentals - Integration Testing - Artificial Intelligence and Regression Testing - Integration Testing in the OO context - Validation Testing - Testing Patterns. **Applied Business Analytics**: Case Studies on Customer Analytics, Marketing Performance Measurement and Management, Employee Performance Analytics, Operation Analytics, Accounting Analytics.

UNIT V: Python Programming

Basics of Python: Input - Output - Identifiers - Variables, Assignment Statements and Expressions - Named Constants - Numeric Data Types and Operators - Evaluating Expressions and Operator Precedence - Common Python Functions - Control Structures and Loops - Objects and Classes - Inheritance and Polymorphism - Exception Handling.

Teaching Methodology	Active Learning, Self-Learning

Books for Study

- 1. Ross, S.M. (2023). *Introduction to Probability and Statistics for Engineers and Scientists* (5th Ed.), Elsevier Academic Press.
- 2. Strang, G. (2023). Introduction to Linear Algebra. (6th Ed.). Cambridge Press.
- 3. Sinan, O. (2016). Principles of Data Science. Packt Publishing.
- 4. Aho, J. E. H., & Ullman, J.D. (2009). *Design and Analysis of Computer Algorithms* (1st Ed.). Addison-Wesley. Massachusetts.
- 5. Raschka, S., & Mirjalili, V. (2019). Python Machine Learning. (3rd ed.). Packt publishing.
- 6. Night, K. (2008). Artificial Intelligence (SIE). McGraw Hill.
- 7. Pressman, R. S., & Maxim, B.R. (2020). *Software Engineering: A Practitioner's Approach*. (9th ed.). McGraw Hill.
- 8. Stephenson, D. (2018). *Big Data Demystified: How to use big data, data science and AI to make better business decisions and gain competitive advantage.* (1st ed.). F T Publishing International.
- 9. Lang, Y.D. (2013). Introduction to Programming using Python (2nd ed.). PearsonEducation.

Books for Reference

- 1. Goodrich, M. T., Tamassia, R., & Mount, D. M. (2023). *Data structures and algorithms in Python: Fundamentals to advanced* (3rd ed.). Addison-Wesley Professional.
- 2. Axler, S. (2015). *Linear Algebra Done Right (Undergraduate Texts in Mathematics)*. (3rded.). Springer.
- 3. Jean, H. Education, C. (2023). Data Science. Certy box Education.
- 4. Pressman, R. S., & Maxim, B.R. (2020). Software Engineering: A Practitioner's Approach (9th ed.). McGraw Hill.
- 5. Goodrich, M. T. Tamassia, R., & Mount, D. M. (2023). *Data structures and algorithms in Python: Fundamentals to advanced.* (3rd ed.). Addison-Wesley Professional.
- 6. Raschka, S., & Mirjalili, V. (2022). *Machine learning with Python: A comprehensive guide* (3rd ed.). Packt Publishing.
- 7. Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach (4th ed.). Pearson.
- 8. Martin, R. C. (2002). Agile software development: principles, patterns, and practices. Prentice Hall.
- 9. Hollingworth, K. (2023). *Dead simple Python: Idiomatic Python for the impatient programmer*. Manning Publications.

Websites and eLearning Source

- 1. https://www.w3schools.com/ai/
- 2. https://www.simplilearn.com/tutorials/statistics-3.tutorial
- 3. https://www.python.org/
- 4. https://www.guru99.com/agile-testing-course.html

Course Outcomes								
CO No.	CO-Statements	Cognitive						
	On successful completion of this course, students will be able to	Levels (K - Level)						
CO1	recall the concepts of correlation, scatter plots, vectors, andmatrices	K1						
CO2	explain data warehousing principles and data mining techniques	K2						
CO3	develop test cases and perform integration testing	K3						
CO4	analyze the challenges and assumptions in AI problem-solving	K4						
CO5	evaluate the suitability of Python for various programming tasks	K5						
CO6	design enhanced decision-making methodologies for diverse industrial applications	K6						

Relationship Matrix											
Semester	Cour	se Code		Title of the Course						Hour	s Credits
4	23PD	S4CE01			Con	nprehensi	ve Examiı	nation		-	2
Course	Programme Outcomes (POs)					Prog	ramme S	(PSOs)	Mean		
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	DSO3	PSO4	PSO5	Scores of
Outcomes	101	102	105	104	105	1501	1502	1505	1004	1505	COs
CO1	2	2	2	3	3	3	3	2	3	3	2.6
CO2	3	3	3	1	2	2	2	2	3	1	2.2
CO3	3	2	1	2	2	3	2	1	1	3	2
CO4	2	2	3	3	3	1	2	3	3	3	2.5
CO5	3	3	2	2	3	3	3	2	2	2	2.5
CO6	2	2	3	2	1	2	2	2	3	3	2.2
Overall Mean Score										2.3 (High)	